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Abstract. More than one-third of the world population suffers from al-
lergy symptoms, thus pollen monitoring is performed worldwide, to pro-
vide data on pollen seasons for people with allergies. To this end, Hirst
traps that catch the airborne pollen grains and other particles are often
used, and then specialists count the pollen grains of each taxon under mi-
croscope. This is a tedious task, so we would like to automate recognition
and counting using deep learning-based object detectors. In this work,
we investigate how changing the color representation affects pollen grain
detection in images. Five different representations were examined: RGB,
AvgRGB, STRESS, CMYK, and Magenta, which we believe may be par-
ticularly useful, as pollen is dyed pink with fuchsin to improve visibility
under a microscope. The average precision results for the investigated
detectors are above 98% when both training and test data come from
the same camera. However, precision decreases when the test data come
from a different camera. We observed that only the conversion of images
to Magenta allows for high pollen detection precision in images from a
different camera than the one used to capture the training samples.

Keywords: image processing · image recognition · pollen monitoring

1 Introduction

Many people suffer from allergies nowadays; allergies are the sixth leading cause
of chronic disease in the U.S. [18]. Inhalant allergies are particularly troublesome,
because while we can avoid allergenic foods or substances in the case of food or
skin allergies, it might be very difficult to avoid allergenic pollen when living
in an area with allergenic plants. Symptoms of pollen allergy are disrupting
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daily life, and the healthcare costs of pollen allergies have been exponentially
increasing since the 1970s, estimated at 130 billion euros per year in Europe
[19]. Collecting and analyzing data on pollen concentration in the air leads to
increased availability of up-to-date information on the threat posed by high
concentrations of allergenic pollen, the prediction of peak allergy periods, and
consequently to a better mechanism for allergy control and prevention.

A volumetric spore trap based on Hirst’s design is the most commonly used
method of pollen monitoring [12]. A drum with an adhesive-coated transparent
plastic band rotates slowly, and particles in the air stick to the tape. The air flow
aspiration is at the rate corresponding to human breathing. The material from
the trap is collected usually once a week, sliced into segments corresponding to
days, and the pollen grains are recognized and counted under the microscope.
The total grain number is then recalculated per cubic meter of air.

The recognition and counting of pollen grains of different taxa is performed
by a palynologist (pollen specialist). This process is very labor-intensive, as dur-
ing the pollen season trees can produce even 12,000 pollen grains in the cubic
meter of air per day. It can take a palynologist several hours at the microscope
to recognize and count pollen grains from one slide from the pollen trap, cor-
responding to one day of monitoring. Therefore, palynologists are interested in
getting help in this process, and researchers working in the information technol-
ogy area are looking for solutions to automate pollen monitoring [15, 7]; allergy
sufferers are also interested in easy access to up-to-date monitoring results.

The increase of the number of monitoring stations would allow more precise
monitoring of the aerobiological conditions, as pollen seasons vary significantly
in different regions, and even the same location can show significant differences
in various years. The automation of pollen counting would shorten the time of
palynologists’ work, and the results could be available on an ongoing basis.

1.1 Main Contributions

The final goal of our work is to automate the pollen monitoring process, to save
the palynologists’ time, and provide faster access to the monitoring outcomes,
which is important for palynologists and allergy sufferers.

To facilitate ground truth labeling, we used reference material, with only
one taxon represented in one image. Slides with pollen are stained with basic
fuchsin, i.e., magenta dye. The level of color intensity depends on the amount of
the fuchsin applied and the duration of the material exposition to it, as well as
the camera properties, but does not depend on the taxon.

In this paper, we investigate whether changing the color representation influ-
ences the quality of taxon recognition. We believe that RGB (Red Green Blue)
image representation may not be optimal for working with pinkish images. Since
the shape (not the color) is the most important indicator to classify objects into
particular taxa, we investigated other representations: CMYK (Cyan Magenta
Yellow Black), Magenta (only one component from CMY (Cyan Magenta Yel-
low), which can be easily calculated from RGB), and Grayscale, calculated using
two different approaches.
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We trained the detectors with images coming from a single camera, and
the performance was tested on two sets of images: 1) images different from the
training and validation sets, captured with the same camera, and 2) images from
a different camera. Next, we investigated whether there are significant differences
in the detection results between the different color representations, and also
between the two cameras, for the models yielding the highest detection precision.
The obtained results indicate that the deep learning based detectors work best
when Magenta representation is used instead of RGB. Therefore, proper image
representation improves the detection results.

2 Related Work

The existing real-time automated pollen monitoring systems are based on vari-
ous approaches, different than the Hirst’s method, like DNA metabarcoding [4],
deep learning and multispectral imaging flow cytometry [8], and the use of the
combination of fluorescein and propidium iodide, with manual data labeling [2].
The results obtained from the automated systems often differ from the manu-
ally elaborated data [22]. Crowdsourcing is also used in the online project [17]
that collates information from various reference collections, and allows the use of
crowdsourcing in the pollen identification tasks via a dedicated online platform.

The automation of pollen identification in images from a microscope has
long been a research topic [9, 5]. In such studies, the occurrence of pollen from
each taxon is counted. Recently, deep learning has been extensively used for this
purpose, including convolutional neural networks [26, 3]; approaches based on
semi-automatic labeling, combining human expertise and machine learning, are
also used [22]. However, it is hard to compare the outcomes of these works, as
various data sets are used in these experiments.

YOLO (You Only Look Once) [1] system for object detection in images, has
already been applied in automated pollen grain detection, using a device similar
to the Hirst’s trap [5], yielding good results even for 16 taxa. In [21], convolutional
neural networks were used for pollen analysis, trained using data representing
122,000 pollen grains, from 347 flowers of 83 species of 17 families, and validated
on 370 samples, representing pollen from pollen baskets of bumblebees’ legs.

3 Materials and Methods

In North, Central, and Eastern Europe birch produces the most allergenic pollen.
Therefore, we decided to investigate the automatic recognition of pollen grains
for the birch family, Betulaceae, namely Alnus, Betula, and Corylus. These taxa
have strong allergenic properties, their pollen grains have similar structural fea-
tures, occur in high concentrations (especially Betula and Alnus), and can be
recorded at the same time. Additionally, microscopy images acquired from Hirst-
type traps usually contain grains of various species (as well as fungal spores, dust,
etc). We chose YOLO for object detection, as it proved successful in similar stud-
ies [14, 15], and our goal was to investigate image representations, rather than
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image detection models. Object detectors find regions in the image that corre-
spond to particular pollen grains, and classify them into target classes (taxa).

3.1 Biological Material

The biological material we use represents the images of tree pollen. Our target
classes are three taxa: Betula, Corylus, and Alnus. The species covered in this
work are Alnus glutinosa (L.) Gaertn., Corylus avellana L., and Betula pendula
Roth. Betula pollen is a major cause of allergic symptoms in the spring. More-
over, cross-reaction between the pollen Betula, Corylus, and Alnus prolongs the
duration of allergy symptoms in many patients, as Betula pollen allergy suffer-
ers often also react allergic to the pollen of the other two taxa. Although the
Alnus and Corylus pollen grains appear in the air at the same time, and birch
produces pollen later, there is still a partial overlap of pollen seasons, thus the
pollen grains of all three investigated taxa can be found in the traps concur-
rently. Moreover, the pollen grains of these taxa look similar, especially Betula
and Corylus. Therefore, correct identification of each taxon may be difficult, but
we know that the pollen grains of Betula are of the smallest size, Betula and
Corylus usually have three pores, and Alnus pollen has more pores. These facts
can be used to guide proper identification of the pollen grains of these taxa,
although the position of a grain on the slide may hide pores.

To avoid tedious manual ground-truth labeling of data from pollen moni-
toring, which may include dirt, spores, and other taxa, reference material for
the investigated species was used. Examples of microscopy images of the pollen
grains of Alnus, Betula, and Corylus are shown in Fig. 1. Glycerinated gelatine
with basic fuchsin was used to stain the pollen grains pink. The degree of pollen
coloring is independent of taxa. The camera applied to take photographs can
also change coloring, see Fig. 1 b, where the background is colored pink.

3.2 Image data

A light microscope Eclipse E400 by Nikon was applied in this work, with 400x
(standard magnification) or 600x magnification, thus the target objects (pollen
grain) were captured at various scales. We used two cameras for acquiring im-
age data from the microscope: Olympus DP 23 microscope camera with 400x
magnification, in most cases, and HDCE-x5 microscope camera with 600x mag-
nification, to capture morphological details of pollen grains. In manual pollen
counting, 400x magnification is used, because lower magnification requires less
work of the specialists, as fewer segments of the acquired material are analyzed.

3.3 Object Detection in Images

The similarity of pollen grains from different classes (especially Betula and Cory-
lus) introduces inter-class similarities, and 2-dimensional representation of grains
introduces intra-class differences, as grains from the same class may then look
different, We applied deep learning based approach to deal with these difficulties.
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In automated object detection in images, the position of an object of interest
has to be found, and the object is then classified into predefined classes. A
bounding box is used to mark the position and size of the object. In two-stage
detection, the first step consists in determining regions of interest (RoI), and
classification is performed on each RoI in the second step. In one-stage detection,
bounding box is found and the object is classified in one step, for each object.

Fig. 1. Exemplary images taken with: a) Olympus DP 23 microscope camera, b)
HDCE-x5 camera, shown in original RGB version and converted to the selected rep-
resentations (left column: Alnus, middle column: Betula, right column: Corylus). The
scale bar in the lower right corner of each image in the top row is equal to 20 µm.

YOLO [24] is a one-stage detector, in which the input image is divided into
NxN grid, and then the bounding box is found within each cell of the grid.
Faster Region-based Convolutional Neural Networks (Faster R-CNN) [25] is a
2-stage detector. A simplified approach, DEtection TRansformers (DETR) [6],
uses a transformer encoder-decoder architecture.

We decided to use YOLO, already applied in pollen detection [15]. We used
models pre-trained on COCO database [16], and then fine-tuned the detector on
our data, following the transfer-learning approach.

3.4 Image Representations

Since all images are colored using basic fuchsin, and the shape (not the color) is
the main feature that indicates the taxon, we decided to apply four other image
representations apart from the original RGB representation:

– CMYK,
– Magenta (single channel taken from CMY),
– AvgRGB - grayscale, calculated as an average of RGB channels;
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– STRESS - grayscale, calculated using the approach described in [13].

In particular, Magenta seems to be suitable for images with the pink col-
oration of pollen grains, and pinkish images, such as those taken with the
HDCE-x5 camera. The CMYK color model is most commonly used for printing;
it contains M (Magenta) channel, and extends the CMY model by the black
(K) color channel. AvgRGB, an averaged grayscale, allows for the analysis of
shapes regardless of color differences. In grayscale, pink-colored images taken
with the HDCE-x5 camera are more similar to those taken with the Olympus
camera, see Fig. 1. STRESS, another grayscale representation, is more sensitive
to local changes in lightness. In this representation, contrast is adjusted locally,
allowing for better representation of object shapes, and leveling the luminance
values of the background in pollen images. It scales the lightness value of each
pixel according to two upper and lower envelope functions. These envelope func-
tions are obtained via sampling a number of pixels in the neighborhood (Ra-
dius) around the pixel. The algorithm works in several iterations, with sampling
only a few pixel values in each iteration. We used STRESS with the following
parameters: R(Radius)=1959, M(Number of samples)=10, N(Number of itera-
tions)=100. The radius was adjusted to fit our data, and M and N represent
values used in many experiments presented in [13] and recommended therein.

We did not consider the HSL model, as L (Luminance) is calculated as L =
R∗0.299+G∗0.587+B ∗0.114. Therefore, the Blue channel is almost excluded,
whereas Magenta consists of half of the Red and half of the Blue components.

3.5 Statistical analysis

We found that the distribution of precision is significantly different from a normal
distribution. Therefore, we performed statistical comparisons of the results using
a nonparametric test to assess the relative treatment effects (RTE), i.e., the
probability that a randomly chosen observation from the whole dataset results
in a smaller value than a randomly chosen observation from the studied group.
To this end, we applied the F1.LD.F2 design [20], as some of the measures were
repeated on the same images. In this design, the test set was used as a grouping
variable (data came from different images), a model (with 3 levels) was treated
as the first sub-plot factor variable, and its repetition (with three levels) was
treated as the second sub-plot factor variable. ANOVA-type statistic was chosen
to test the difference in the precision distribution. Additionally, we compared
the precision for different color representations performing multiple comparisons
with the Holm-Bonferroni adjustment [11] to control the family-wise error rate.

4 Experiments

4.1 Datasets

We used two sets of images: the first one taken with Olympus DP 23 microscope
camera (available from [14]), and the second one taken with HDCE-x5 micro-
scope camera. The images taken with HDCE-x5 camera show quite uniform
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coloration of background, and pollen grains also show similar level of coloration
in all images, independent of taxa.

We divided our data into train, validation, and test sets. The train data
represented 293 images from the Olympus DP 23 camera. We had 549 objects
(pollen grains) for Alnus, 312 for Betula, and 316 for Corylus. The validation
data represented 66 images from the Olympus DP 23 camera. We had 143 pollen
grains of Alnus, 96 Betula pollen grains, and 59 grains of Corylus.

The test data include:

– testO, 38 images taken with Olympus DP 23 camera, containing 72 pollen
grains of Alnus, 29 grains of Betula, and 60 Corylus grains, magnified 400x.

– testH, 49 images taken with HDCE-x5 camera, containing 14 images for
Alnus with 41 pollen grains (objects), 20 images for Betula with 48 objects,
and 15 images for Corylus with 42 objects (400x or 600x magnification).

All images represent the same set of biological samples. The data were man-
ually divided into train, validation, and test sets, as some images represented
the same area of the investigated sample, but with different focusing. This way
we avoided having the same area in train, validation, and test sets. Still, pollen
detection and taxon identification can be difficult, as some objects in the images
might be out of focus (only palynologist could have adjusted the camera focus
when taking pictures), overlapping, or only partly visible. If monitoring images
were used, other objects (dust, air bubbles) could also be present in these images.

Fig. 1 shows images taken with both Olympus and HDCE-x5 cameras, con-
verted to the representations listed in Section 3.4. The CMYK image looks iden-
tical to RGB, but their internal representations differ.

4.2 Detectors

We used YOLO12, small network architecture with 272 layers and 9254297
parameters, as bigger models applied in similar research gave no improvement
[14]. An image size of 640x640 was used as a trade-off between computing speed
and quality. We built 5 types of detectors, each one in 3 repetitions (i.e. with
different values of random seed):

– 3 models built on original (RGB) images, used as baseline,
– 3 models for CMYK representation,
– 3 models for Magenta channel only, taken from CMY,
– 3 models for grayscale representation using AvgRGB,
– 3 models for grayscale using STRESS with R=1959, M=10, and N=100.

Each detector was trained for 100 epochs, and we chose the model that
performed best on the validation dataset. To evaluate these detectors, the test
images were converted to the representations mentioned above. The models were
tested on both testO and testH, and the training (and validation) in each case
was performed on images in the same representation as the test data. We used
a PC with Intel Core i9-14900KS 3.20 GHz, NVIDIA GeForce RTX 4070 Ti
SUPER; the training phase for each detector took approximately five minutes,
and the average prediction speed was 70 milliseconds per image.



8 A. Wieczorkowska et al.

4.3 Quality Measures for Model Evaluation

Standard metrics for object detection in images evaluate how well a predicted
bounding box aligns with the actual object. Commonly used metrics include
mean Average Precision (mAP), specifically mAP@.5 and mAP@[.5:.95]. The
mAP@.5 metric assesses accuracy by comparing the predicted bounding box with
the ground-truth bounding box using the IoU (Intersection over Union), which
quantifies the overlap between two bounding boxes. The bounding box with IoU
≥ 0.5 is considered a hit. The mAP@[.5:.95] metric represents the average mAP
calculated across IoU thresholds ranging from 0.5 to 0.95 in increments of 0.05.

Our research differs from standard object detection approaches, as we are
less concerned with the exact position of the bounding box. In pollen grain
counting, the goal is to achieve classification with 100% precision, i.e., without
misclassification of pollen grains. Recall (i.e., omitting grains) is less critical here,
as palynologists exclude grains when they are uncertain about the taxon. This
is why we selected the precision of the obtained results for statistical analyses.

5 Results

Exemplary prediction results are visualized in Fig. 2; we selected two problem-
atic images (with multiple Betula pollen grains), captured using two different
cameras. We will analyse the results obtained from all three repetitions of each
model, but to reduce the number of pictures presented, the best prediction results
for each color representation are shown. As we can see, the detection results for
the image captured using the HDCE-x5 camera (the bottom row of images) are
usually worse than those obtained for the image from the Olympus DP 23 cam-
era (the top row). The only exceptions are the results for the STRESS model.
Obviously, it is easier to obtain correct recognition of the taxa when the test
image comes from the same dataset as the training data (testO). The recog-
nition of pollen grains in the images coming from the testH dataset is much
more challenging; the detection results are completely wrong for RGB and Av-
gRGB representations. On the other hand, in the case of STRESS, we get two
correct recognitions out of seven grains for the image from testH dataset, while
we received no correct prediction for the image coming from testO. Still, some
grains have multiple classes assigned, so they may be counted multiple times,
depending on the counting procedure.

Average precision for both test sets, testO and testH, for 3 repetitions
of each detector, is shown in Tab. 1. The results for testO are much better
than for testH for all representations except Magenta. Nonparametric ANOVA
shows statistically significant differences in precision between both test sets (p-
value=5.19 · 10−14). The results for testO are high and stable (std<4%), but
testH shows much greater variability (std up to ∼49% for RGB), confirming
that the detectors are less reliable when tested on images from a different cam-
era. Only Magenta yields relatively accurate and stable results under these con-
ditions. The detection for RGB is much worse on testH than on testO, which
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Fig. 2. Exemplary predictions obtained for two problematic images taken using HDCE-
x5 (the top row) and Olympus DP 23 (the bottom row) microscope cameras. GT
stands for ground truth in RGB representation. Images show detections for each color
representation. The best results (out of 3 repetitions of each detector) are shown.

shows that the standard RGB representation is not well suited for pollen grain
detection.

Table 1. Average precision for testO and testH datasets.

testO (mean ± std) [%] testH (mean ± std) [%]

RGB (baseline) 99.62 ± 1.68 43.69 ± 48.78
CMYK 99.14 ± 1.97 76.06 ± 41.93
Magenta 98.71 ± 3.63 87.80 ± 31.27
AvgRGB 99.21 ± 2.54 67.04 ± 42.99
STRESS 98.98 ± 3.39 78.79 ± 34.30

When both test and train data come from the same camera (testO), all
results are above 98%, but when the test data come from a different camera
(testH), precision for particular detectors for each taxon drops dramatically,
especially for Betula (Fig. 3), except Magenta representation. The precision dis-
tribution for each repetition (Fig. 4) shows that this representation is more stable
– the outcomes for different repetitions are similar. We conclude that this simple
representation, adjusted to the analyzed images, produces very good results.

The nonparametric ANOVA analysis shows the significance of precision dif-
ferences (p-value<0.05) for both test sets, and also for other sources of variation
(color space, repetition, and all interactions). Therefore, all experimental factors
and their interactions significantly influence the precision distribution. Next, we
compared the precision results for other color representations with the base-
line model (RGB) for testO and testH separately. The distribution of results
for AvgRGB does not differ from the baseline for testO (the adjusted p-value
padj=0.23). In the remaining comparisons, we found significant differences in the
precision distribution between the baseline and the other models (padj<0.05).
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Fig. 4. The boxplot showing the precision for 3 repetitions of the detectors for the
investigated color representations for images from both test sets.

6 Discussion

The results we obtained indicate that adjusting the image representation to the
data, in our case stained with fuchsin, significantly improves detection results
when the test data are very different from the training data. Comparisons with
other studies on pollen grain recognition are challenging because of differences in
the datasets used, the number of taxa included, methods of database preparation,
and the diverse metrics applied to report results. In [10], automatic localization
of pollen grains using video data that captures the focusing process of samples
from eleven taxa is investigated, with F1 score of 96% for the localized grains.
However, the taxa analyzed and evaluation metrics are different from ours. In
[15], 4 taxa were investigated, including taxa investigated here, yielding precision
above 90% for YOLO, but test images were taken with the same camera as the
training data. Our study is limited to 3 taxa, but they are common allergens in
Europe, and their pollen grains are very similar and pose difficulties in automatic
detection. We believe that adding other taxa may increase the average precision
of trained models.

Our research focuses on light microscopy images. In [23], the identification of
pollen grain taxa using various microscopy techniques is investigated, including
dark field microscopy and phase contrast microscopy. The results show that the
choice of microscopy technique influences recognition quality, supporting our
hypothesis that image representation plays a role in the recognition process.
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7 Conclusion

Our work aimed at automated detection of tree pollen grains, representing three
allergenic taxa, namely Betula, Corylus, and Alnus, in microscopy images. The
analyzed slides are colored with fuchsin, thus pollen grains are pinkish in these
images. Additionally, a camera may also introduce pinkish shade to the image.
We investigated whether changing image representation could enhance detection
quality, particularly for images from different cameras or with varying color
saturation. We found that the models trained on a particular image set may
learn image features typical of a camera, and not of particular taxa. Our analyses
allow us to conclude that image representation, as well as the camera applied
for data acquisition, can significantly change the quality of object detection in
images. In our experiments, Magenta works best, as the precision results are
relatively high and stable. Therefore, even if the representation is simpler than
the original one (with one instead of three image components), but adjusted to
the coloration of images, better detection could be obtained.

The taxa used in our study produce pollen grains of similar structural fea-
tures. Pollen grains of other plants may also be found in slides from pollen
monitoring, together with the analyzed taxa, but they have different structural
features and they would be easier to distinguish by detectors.

As a future work, we would like to collect more data, apply other detectors
(DETR), and use the investigated simple single-channel representations that
yielded best detection results for pollen images, mainly Magenta. Additionally,
some of our images include out-of-focus pollen grains and have various bright-
ness levels. This may deteriorate the results, so we are going to investigate how
changes in the light levels influence the quality of pollen grain detection.
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