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Abstract. We address a classification problem where data are not single-
valued, but distributions. The objective is to identify Internet traffic
re-direction. Each observation consists of a block of 10 measurements
of round-trip-times (RTT) measured at each of a set of probes, and is
represented by the corresponding empirical distribution. The proposed
approach relies on a method for discriminant analysis of distributional
data that uses fractional programming, and where distributions are rep-
resented by quantile functions, under specific assumptions. A linear dis-
criminant function is defined, that allows obtaining a score for each unit,
in the form of a quantile function. This is then used to classify the units
in a priori groups, using the Mallows distance. Results show that pro-
posed approach works well, allowing for the identification of the diverted
traffic.

Keywords: Classification · Histogram data · Multivariate statistics ·
Symbolic Data Analysis.

1 Introduction

Complex data, where “observations” are not single numerical values or categories,
but include intrinsic variability, occur frequently. This is very pertinent in Data
Mining applications where vast sets of data are collected, but data should be
analysed at a higher level - take, e.g., the case of telecommunication companies,
which record data on each call made (duration, etc.), but where the focus does
not lie on individual calls but rather on client behaviour, and therefore informa-
tion about the calls of each client, or specific group of clients, must be somehow
aggregated. However, for each recorded feature, the observed variability inherent
to each client or group should be taken into account; if one relies, as it is usually
done, on central measures - means, medians, or modes - relevant information
is irremediably lost. Symbolic Data Analysis (see, e.g. [1–3]) provides a frame-
work allowing to represent and analyse data including inherent variability, and
that go beyond traditional data models where one single value is recorded for
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each unit on each variable. This has lead to the introduction of new variable
types, where the observed “values” for each unit are not just single numerical
values or categories, but finite sets of values, intervals or, more generally, distri-
butions over a given domain. In this latter case, we say that we are in presence
of distributional-valued variables.

In this work we are concerned with a problem of Internet traffic analysis,
where each “observation” consists of multiple measurements, with the objective
of identifying traffic diversion. Data are aggregated in the form of empirical dis-
tributions, for each measurement variable. We apply a method for classification
of distributional data, that relies on the representation of distributions by the
respective quantile functions, under specific assumptions, and uses a distance-
based rule for class assignment [4].

The remainder of the paper is organised as follows: Section 2 describes the In-
ternet traffic problem. In Section 3, we introduce histogram-valued variables and
their representation, and define linear combination for these variable type. Sec-
tion 4 details the linear discriminant method for histogram-valued data, which is
then applied to the Internet data in Section 5. Section 6 summarizes the paper,
pointing out avenues for future research.

2 The Internet Traffic Problem

We address a problem of identifying Internet traffic re-directions (“attacks”). [5].
For this purpose we use measurements obtained from a worldwide distributed
probing platform, designed to detect routing variations based on round-trip-
times (RTT) deviations inferred from disperse locations designed as targets.
There are 12 probes, where the RTT are measured, and four targets, namely
Chicago, Frankfurt, Hong-Kong, and London, here we focus on the London tar-
get. Regular traffic goes from probe to target and comes back to the probe; when
an “attack” occurs, traffic is diverted through a relay before returning to the
probe, and the RTT is typically larger. Table 1 lists the probes, targets, and
relays. The setup is described in [5] and has been originally proposed in [10].

Table 1. Internet data: Probes, targets and relays.

Probes Targets
Amsterdam Chicago Chicago Frankfurt
Frankfurt Los Angeles 2 Hong Kong London
Iceland São Paulo
Milan Viña del Mar Relays
Sweden Johannesburg 1 Los Angeles 1 Madrid
Israel Johannesburg 2 Moscow São Paulo 1
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The objective is to determine if a target is under attack. For each probe,
an observation consists of 10 measurements of RTT. Summarizing these mea-
surements by a central value, e.g. the mean, would lead to a high loss of po-
tentially relevant information. We choose to represent each set of measurements
by the corresponding empirical distribution, and we characterise each such dis-
tribution by a histogram defined on the two intervals [minimum , median[ and
[median , maximum]. Table 2 shows some units for the London target, one cor-
responding to a regular case, and the others to “attacks” through two different
relays.

Table 2. Distributional data for London (partial view).

Probe: Amsterdam Probe: Chicago . . . Group
s1 {[8.9, 9.2[, 0.5; [9.2, 9.4], 0.5} {[88.0, 89.8[, 0.5; [89.8, 93.2], 0.5} . . . Regular
. . . . . . . . . . . . . . .

s9000 {[143.0, 149.2[, 0.5; [149.2, 155.3], 0.5} {[144.0, 148.65[, 0.5; [148.65, 153.4], 0.5} . . . Relay LA1
. . . . . . . . . . . . . . .

s9700 {[38.5, 38.65[, 0.5; [38.65, 38.8], 0.5} {[112.6, 116.25[, 0.5; [116.25, 120.3], 0.5} . . . Relay Madrid
. . . . . . . . . . . . . . .

Table 3. Number of units corresponding to regular and diverted traffic, by relay.

Target Regular Relay Total
LA1 Madrid Moscow São Paulo Attacks

London 8569 681 567 782 835 2865

Table 3 presents the number of regular and diverted observations. To ob-
tain a discriminant score for each unit, that allows for its classification as reg-
ular or attack, we define a discriminant function as a linear combination of the
histogram-valued variables. The next section addresses this problem.

3 Histogram-valued Data

When the underlying domain of a distributional-valued variable is a compact
subset of IR, we have a histogram-valued variable - see also [7]. In our problem,
data take the form of empirical distributions of the RTT, and are represented
by histograms.

Histogram-valued variables are formally defined as follows.
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Definition 1. Y is a histogram-valued variable when to each unit i = 1, . . . , n
corresponds a histogram Y (i) defined by a finite number of contiguous and non-
overlapping intervals, each of which is associated with a (non-negative) weight.
Then, Y (i) can be represented by a histogram:

HY (i) =
{[

IY (i)1
, IY (i)1

[
, pi1;

[
IY (i)2

, IY (i)2

[
, pi2; . . . ;

[
IY (i)mi

, IY (i)mi

]
, pimi

}
(1)

piℓ is the probability or frequency associated with the subinterval
[
IY (i)ℓ

, IY (i)ℓ

[
,

mi is the number of subintervals for unit i;
mi∑
ℓ=1

piℓ = 1; IY (i)ℓ
≤ IY (i)ℓ and

IY (i)ℓ−1
≤ IY (i)ℓ

, ℓ = 1, . . . ,mi.

Each subinterval IY (i)ℓ may be represented by its lower and upper bounds

IY (i)ℓ
and IY (i)ℓ , or by its centre cY (i)ℓ =

IY (i)ℓ
+IY (i)ℓ

2 and half-range rY (i)ℓ =
IY (i)ℓ

−IY (i)ℓ

2 .
Y (i) may, alternatively, be represented by the inverse cumulative distribution

function, the quantile function ΨY (i), under specific assumptions. Assuming that

within each subinterval
[
IY (i)ℓ

, IY (i)ℓ

[
the values for the variable Y, for unit i,

are uniformly distributed, the quantile function is piecewise linear and is given
by

ΨY (i)(t) =



cY (i)1 +
(

2t
wi1

− 1
)
rY (i)1 if 0 ≤ t < wi1

cY (i)2 +
(

2(t−wi1)
wi2−wi1

− 1
)
rY (i)2 if wi1 ≤ t < wi2

...

cY (i)mi
+
(

2(t−wi(mi−1))

1−wi(mi−1)
− 1

)
rY (i)imi

if wi(mi−1) ≤ t ≤ 1

(2)

where wiℓ =

ℓ∑
h=1

pih, ℓ = 1, . . . ,mi.

On the basis of quantile function representation, histogram-valued obser-
vations Y (i), Y (i′) may be compared by the Mallows distance (also known as
L2-Wasserstein distance):

DM (ΨY (i), ΨY (i′)) =

√∫ 1

0

(ΨY (i)(t)− ΨY (i′)(t))2dt (3)

Under the uniformity hypothesis, and considering a fixed weight decomposition
(mi constant, same weights, different intervals, as it is the case in our represen-
tation of the Internet data) we have [8]:

D2
M (ΨY (i), ΨY (i′)) =

m∑
ℓ=1

pℓ

[
(cY (i) − cY (i′))

2 +
1

3
(rY (i) − rY (i′))

2

]
(4)



Classification of Internet Traffic: A Distributional Data Approach 5

The Mallows barycentric histogram ΨX is the solution of the minimization

problem ΨY := argmin

n∑
i=1

D2
M (ΨY (i)(t), ΨYb

(t)). It is defined by the quantile

function where the centres and half ranges of each subinterval ℓ are the classical
mean of the corresponding centres c and half ranges r of all observations.

Covariance between two histogram-valued variables X and Y , based on the
Mallows distance, has been defined in [9] as

cov(X,Y ) =
1

n

n∑
i=1

∫ 1

0

(
ΨX(i)(t)− ΨX(t)

) (
ΨY (i)(t)− ΨY (t)

)
dt (5)

Assuming the Uniform distribution across the subintervals, this is written as

cov(X,Y ) =
n∑

i=1

m∑
ℓ=1

pℓ

[
(cX(i)ℓ − cXℓ)(cY (i)ℓ − cYℓ) +

1

3
(rX(i)ℓ − rXℓ)(rY (i)ℓ − rYℓ)

]
(6)

3.1 Linear Combination of Histogram-valued Variables

The space of quantile functions is a semi-vectorial space: the sum of quantile
functions is still a quantile function, but the product of a quantile function by a
scalar is quantile function only if this scalar is non-negative - otherwise a decreas-
ing function is obtained, which cannot be a quantile function. For this reason,
the linear combination of histogram-valued variables, represented by quantile
functions, requires a special definition. In [6] a definition for linear combination
of quantile functions is proposed that solves the problem of the semi-linearity of
the space of the quantile functions. This is based on using both the quantile func-
tions representing the histograms of the observed distributions and the quantile
functions that represent the respective symmetric histograms - two terms per
independent variable. Therefore, the non-negativity restrictions on the param-
eters do not imply a direct linear relation, while non-colinearity is ensured. A
linear combination of histogram-valued variables Xj , j = 1, . . . , p, is defined as
(see [6]):

ΨZ(t) =

p∑
j=1

ajΨYj (t)−
p∑

j=1

bjΨYj (1− t), with t ∈ [0, 1] ; aj , bj ≥ 0 (7)

4 Linear Discriminant Analysis of Histogram-valued Data

The linear discriminant function S(i) that allows obtaining a discriminant score
for each unit is hence defined by a linear combination of the observed histogram-
valued variables as in (7):

ΨS(i)(t) =

p∑
j=1

ajΨYj(i)(t)−
p∑

j=1

bjΨYj(i)(1− t) with t ∈ [0, 1] ; aj , bj ≥ 0 (8)
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In the presence of s groups, the sum of the squared Mallows distance between
ΨS(i)(t) and the corresponding barycenter ΨS(t) may be decomposed in the sum
of the squares and cross-products (SSCP) between groups and within groups,
i.e,

n∑
i=1

D
2
M (ΨS(i)(t), ΨS(t)) =

s∑
k=1

nkD
2
M (ΨS(t), ΨSk

(t)) +
s∑

k=1

∑
i∈Gk

D
2
M (ΨS(i)(t), ΨSk

(t)) (9)

with nk the cardinal of group k, and the quantile functions ΨS(i)(t) - score,
ΨS(t) - barycentric score and ΨSk

(t) - barycentric group score. In matricial form,
γ′Tγ = γ′Bγ + γ′Wγ, where T is the matrix of the total SSCP, B and W are
the matrices of the SSCP between-groups and within-groups, respectively.

As in classical linear discriminant analysis, the optimal parameter vector γ∗

is estimated as

γ∗ = argmax
γ

λ =
γ′Bγ

γ′Wγ
subject to γ ≥ 0 (10)

The obtention of the vector of parameters γ∗ requires the optimization of
constrained rational quadratic functions. This is a non-convex, hard optimiza-
tion problem, for which it is easy to find a good solution but difficult to prove
optimality. Optimisation is done by a Branch and Bound technique relying on
Conic Optimization - see [4].

For more than two groups, successive discriminant linear functions must be
derived, maximising λ under the additional constraints that they should be non-
correlated with the previous ones (null covariance, see formula (6)).

Classification in the a priori groups is done using the Mallows distance: a
unit si is assigned to the group for which the Mallows distance between its score
and the score of the group’s barycentric histogram is minimum.

5 Classification of the Internet Traffic Data

We first consider the two-class problem, consisting in separating the regular
traffic from the “attacks”.

Applying the method presented above, we obtained the linear discriminant
function

ΨS(i)(t) = 0.29885ΨY2(i)(t)+0.0085948ΨY3(i)(t)−0.73097ΨY4(i)(1−t)+0.0007634ΨY5(i)(t)
−0.00065739ΨY6(i)(1−t)−0.12929ΨY7(i)(1−t)−0.0019676ΨY8(i)(1−t)+0.025075ΨY9(i)(t)
+ 0.95427ΨY10(i)(t)− 0.22277ΨY11(i)(1− t)− 0.00014969ΨY12(i)(1− t), with t ∈ [0, 1].

This shows that the probes that influence more the discriminant score (a
quantile function) are (in this order) Y10 - Johannesburg1 , Y4 - Frankfurt (in
the opposite direction), Y2 - Chicago, and Y11 - Johannesburg2.

The classification of each unit in one of the two groups is then done on
the basis of the distance between the corresponding score and the scores of the
barycenter of each of the two groups.
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This lead to the results displayed in Table 4. We note that the proposed
method successfully distinguishes the two groups, identifying more than 99% of
the diverted traffic.

Table 4. Classification results for the two-class problem.

Target Accuracy Precision Recall

London 0.9987 0.9983 0.9965

We further addressed the five-class problem, where we seek to identify “at-
tacks” by relay from the regular observations. The hit-rates obtained on the basis
of either four or just the first discriminant functions are displayed in Table 5.
We observe that all four relays are well distinguished between themselves, and
from the regular observations, with error-rates never above 0.053 when four dis-
criminant functions are considered, but reducing to less than 0.0012 when using
just the first one. In this particular problem, the results strongly suggest that
the five classes are separable along just one (distributional) dimension.

Table 5. Internet data: hit-rates (%) for the five class problem.

Target Nb. functions Regular LA1 Madrid Moscow São Paulo Global

London
4 96.9891 97.9442 94.7090 96.1637 99.7608 97.0900

1 100.0000 100.0000 100.0000 100.0000 99.8804 99.9999

6 Conclusion

We presented a classification method for numerical distributional data, where
discriminant scores for each unit take the form of quantile functions. This score is
obtained by an appropriate linear combination of the histogram-valued variables,
where the model parameters are obtained by the optimization of a constrained
fractional quadratic problem. This approach allowed identifying “attacks” in In-
ternet traffic data.

Current research concerns the development of the method for the classifica-
tion in more than two groups. For successive discriminant functions additional
constraints must be considered. Furthermore, the relevance of the different dis-
criminant functions must be assessed.
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