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Abstract. Knowledge graphs (KGs) provide a powerful framework for
representing complex, interrelated data - an essential capability for nav-
igating complex domains such as medicine. This is particularly true in
the study of stroke, one of the leading causes of death and long-term dis-
ability worldwide. Currently, there is no comprehensive medical KG for
the stroke domain, largely because the specialized knowledge embedded
in the vast medical literature makes manual construction prohibitively
time-consuming. In this work, we explore the steps towards automated
construction of a Stroke KG by comparing four relation-extraction meth-
ods and proposing novel LLM-as-a-judge-based evaluation. Specifically,
we benchmark one unsupervised system (OpenIE), two supervised frame-
works (REBEL and ReLiK), and one large-language-model approach
(Gemma 2 9B). Our contributions are twofold: first, we provide a sys-
tematic evaluation of multiple extraction strategies tailored to a domain-
specific KG; second, we propose a hybrid evaluation protocol – combining
traditional statistical metrics with an LLM-as-a-judge paradigm – to as-
sess graph quality more comprehensively. The results demonstrate that
LLM-based methods hold particular promise for generating a robust,
high-coverage Stroke KG, a key resource for accelerating both research
and clinical decision-making in stroke care.

Keywords: Knowledge Graph Construction · Relation Extraction · Large
Language Models · Biomedical Natural Language Processing.

1 Introduction

Stroke represents a severe and escalating global health crisis. Often described
as a “silent pandemic” for its pervasive yet under-recognized impact, it is the
second leading cause of death worldwide and one of the primary driver of long-
term disability and dementia [5,6,8]. The scale of this burden is projected to
grow substantially, with annual mortality expected to increase by 50% to 9.7
million and the global economic toll set to reach $2.3 trillion by 2050 [6,7]. This
immense human and economic cost creates an urgent imperative for accelerated
research to improve prevention, treatment, and rehabilitation.
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This burden is distributed inequitably, revealing a stark paradox. While high-
income countries have achieved a 42% reduction in stroke incidence over four
decades, rates in low and middle-income countries (LMICs) have more than
doubled during the same period [9]. Today, LMICs account for 86% of all stroke-
related deaths, with strokes occurring on average 15 years earlier than in wealth-
ier nations [6,9]. This escalating crisis, alongside promising new therapeutic
breakthroughs [10], has driven an unprecedented surge in scientific literature.
However, this very explosion of knowledge presents a formidable challenge: the
volume is now too vast for systematic human analysis.

This rapid growth of biomedical literature leads to a profound information
paradox: while the sheer volume of published data accelerates the potential for
discovery, it simultaneously raises insurmountable barriers to its systematic anal-
ysis and synthesis. The entirety of PubMed [11], the primary repository for
biomedical literature, is expanding at an exponential rate, with tens of thou-
sands of new articles related to stroke published each year [12]. This deluge of
information, scattered across hundreds of journals and presented primarily in
unstructured natural language, has grown far beyond the capacity of any human
researcher, or even a large team, to comprehensively read, process, and connect.
This unstructured format represents a fundamental bottleneck, resulting in frag-
mented knowledge, duplicated research efforts, and, most critically, missed op-
portunities to uncover the complex patterns essential for the next breakthrough
in stroke medicine.

To overcome this challenge of unstructured information and unlock the col-
lective intelligence embedded in the literature, Knowledge Graphs (KGs) have
emerged as a powerful and transformative paradigm [13]. Rooted in the princi-
ples of the Semantic Web [2], KGs are structured representations of knowledge,
typically build using standards like the Resource Description Framework (RDF).
Formally, a KG can be defined as a set of factual triplets T , where each triplet
(s, p, o) ∈ E ×R×E consists of a subject s, a predicate p, and an object o, with
E being the set of entities and R the set of relations. Entities serve as the nodes
of the graph, representing concepts like diseases (e.g., Ischemic Stroke) or drugs
(e.g., Alteplase), while relations (or predicates) are the directed edges that define
the connection, such as treats or causes.

For example, the factual statement “Aspirin is used to prevent recurrent
ischemic stroke” can be distilled into the machine-readable triplet: (Aspirin, pre-
vent, Ischemic Stroke). By systematically extracting millions of such triplets
from the literature, we can construct a comprehensive graph that maps the
landscape of a domain. KGs are a uniquely suitable solution for this problem
because they: 1) enable complex, multi-hop queries that are impossible with
standard keyword searches; 2) allow for the discovery of implicit, hidden con-
nections through graph-based algorithms like link prediction; and 3) serve as
a foundational, structured backbone for a host of downstream AI applications,
including clinical decision support systems, hypothesis generation engines, and
sophisticated question-answering platforms [29,31].
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In this work, we conduct a comprehensive investigation into building a high-
quality StrokeKG. We address the core challenges of corpus creation, relation
extraction, and meaningful evaluation. We compare four distinct relation ex-
traction methods and introduce a novel LLM-as-a-judge assessment. Our main
contributions are: (1) We construct a novel corpus of 433k PubMed abstracts
focused on stroke, providing an up-to-date dataset for training and evaluating
domain-specific models. (2) We perform a systematic comparison of four relation
extraction paradigms (OpenIE [25], REBEL [27], ReLiK [26], and Gemma 2 9B
[28] LLM) to build distinct StrokeKGs, analyzing their trade-offs in terms of
triplet quantity, quality, and diversity. (3) We propose and implement a novel
LLM-as-a-judge evaluation framework with 10 clinically-informed criteria to as-
sess triplet quality, moving beyond traditional metrics to measure factual cor-
rectness, relevance, and actionability. (4) Our findings provide a clear roadmap
for building a large-scale StrokeKG, with LLMs showing the most promise for
generating high-quality, clinically relevant knowledge, thereby paving the way
for the next generation of data-driven research in stroke.

2 Related work

The construction of KGs for structuring and unlocking insights from vast amounts
of text is an active area of research, particularly in specialized scientific domains
[1,3,4]. Recent efforts have produced domain-specific KGs for diverse fields such
as food and biomedicine, mapping interactions between chemicals and diseases
[14], and framework materials in chemistry [15]. The emergence of Large Lan-
guage Models (LLMs) has significantly accelerated this trend, with automated
pipelines being developed to expand KGs in complex fields like cognitive neuro-
science [16]. This body of work underscores a consensus: creating high-quality,
specialized KGs is a critical step toward data-driven discovery. However, the
methods for evaluating the quality and utility of these graphs remain a signifi-
cant challenge and a subject of ongoing research [17].

KG evaluation methodologies can be broadly grouped into several paradigms.
A traditional approach focuses on intrinsic structural and semantic quality.
Structural metrics assess the graph’s ontological backbone, quantifying how well
the defined schema is utilized by the instance data. For example, Seo et al. [19]
proposed metrics like Instantiated Class Ratio (ICR) and Instantiated Property
Ratio (IPR) to measure the practical usage of a KG’s classes and properties.
Semantic metrics, on the other hand, evaluate the logical coherence and cor-
rectness of the graph’s content, often by comparing it to an external knowledge
source. However, a key limitation of this approach is that general-purpose seman-
tic metrics struggle in highly specialized domains, as their performance degrades
when the KG’s concepts are not well-represented in the reference corpus [20].
Other evaluation paradigms include extrinsic, task-based evaluation, which mea-
sures a KG’s utility by its performance on downstream tasks like classification
or regression [21], and user-centric evaluation, which aligns accuracy assessment
with the information needs and query patterns of end-users [22]. While valuable,
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these methods either do not directly assess the fine-grained factual accuracy of
individual relations or require significant task-specific setup.

With the rise of LLMs, research has focused on their application to both
KG construction and evaluation. For construction, a central debate revolves
around the trade-offs between fine-tuning and prompting. Studies have shown
that while few-shot prompting is more adaptable to out-of-domain data, fine-
tuning a model on a specific task generally yields higher performance and reduces
factual hallucinations and omissions [18]. Other advanced methods explore the
use of multi-agent systems, where communicative LLM agents collaborate to
build a KG by leveraging both parametric knowledge and web search [24]. Criti-
cally, this line of work also highlights that standard text-matching metrics (e.g.,
BLEU, ROUGE) are often insufficient for KG evaluation, as they fail to handle
synonymous expressions and thus underestimate true model performance [18].

This gap in refined, scalable, and domain-aware evaluation has led to a
promising new direction: using LLMs themselves as automated “judges”. This
“LLM-as-a-judge” or “AutoRater” paradigm leverages an LLM’s world knowledge
and instruction-following capabilities to assess the quality of another model’s
output based on a set of defined criteria [30]. This paradigm offers the poten-
tial for scalable, fine-grained feedback that goes beyond simple structural or
string-matching metrics. The viability of this concept is actively being explored,
with research investigating whether LLMs can serve as reliable “Graph Judgers”
for KG construction tasks [23]. Our work builds directly upon this emerging
paradigm: We adapt and steer the LLM-as-a-judge concept for the rigorous de-
mands of the stroke domain, designing a novel evaluation framework with 10
clinically-informed criteria to assess the factual correctness, relevance, and util-
ity of triplets extracted for our StrokeKG.

3 Materials and methods

3.1 Corpus collection methodology

To ground our investigation, we constructed a large-scale, domain-specific text
corpus focused on stroke research. The corpus was compiled from PubMed [11],
the foremost repository of biomedical literature, ensuring comprehensive cover-
age and high-quality metadata.

The data was collected by querying the NCBI Entrez Programming Utilities
(E-utilities) API. First, we retrieved the complete set of PubMed IDs (PMIDs)
matching a single, broad search query: "stroke". Second, for each retrieved
PMID, we fetched its full metadata record. Records were retained for further
processing only if they contained an abstract, which is essential for our rela-
tion extraction task. While full-text articles contain more information, focusing
on abstracts is a standard practice in large-scale biomedical text mining, as
they provide a high-density summary of key findings and ensure computational
tractability across a corpus of this magnitude. For each valid record, we stored
the following fields: PMID, title, abstract, author list, author affiliations, journal
name, publication date, DOI, and Medical Subject Headings (MeSH) terms.
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The corpus contains information about abstracts until April 29, 2025. The
initial query returned 488,812 unique PMIDs associated with the term "stroke".
Of these, 55,689 records were discarded as they lacked an abstract, yielding a
preliminary corpus of 433,123 documents. A final deduplication step, based on
abstract text, was performed to remove any identical entries. The final corpus
consists of 432,356 unique abstracts. This comprehensive collection originates
from 8,940 distinct journals and includes contributions from over one million
unique author names, representing a substantial cross-section of the global stroke
research community. This dataset, which we term the Stroke-PubMed Cor-
pus, serves as the foundation for all subsequent experiments.

3.2 Methodology

In this work, we conduct a comprehensive comparative study of four relation
extraction paradigms to construct the StrokeKG. Our methodology is designed
to systematically assess the trade-offs between these methods, focusing on the
quantity, diversity, and clinical relevance of the extracted knowledge. The over-
all workflow consists of three main stages (see Fig. 1): (1) building four distinct
knowledge graphs from our Stroke-PubMed Corpus using one rule-based, two
pre-trained, and one LLM-based method; (2) performing a statistical analysis of
the resulting graphs to characterize their structural properties; and (3) imple-
menting a novel LLM-as-a-judge [23] evaluation framework to assess the semantic
quality and clinical validity of the extracted triplets.

Fig. 1. Proposed methodology: Given a document, we extract its abstract and process
it through a set of relation extractors to obtain a collection of triplets, which are then
evaluated by a large language model using medically relevant criteria.

Extraction Methods. To ensure a comprehensive evaluation across different
paradigms of relation extraction, we selected four representative methods. Our
selection was designed to span the spectrum from classic unsupervised techniques
to modern generative models. This strategic selection allows for a direct com-
parison of their inherent strengths and weaknesses in the context of specialized
KG construction.
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OpenIE [25] represents a traditional, unsupervised, rule-based approach,
serving as a baseline that operates without pre-trained domain knowledge. It
does not rely on pre-trained data or a fixed schema. Instead, it processes sen-
tences to identify relation triplets based on general linguistic patterns and syntac-
tic dependencies. Its key characteristic is its ability to extract a wide, open-ended
set of relations, though often at the cost of precision and semantic consistency.

REBEL [27] and ReLiK [26] represent state-of-the-art supervised, pre-
trained models. They operate on a fixed schema, allowing us to evaluate the
trade-offs of precision and recall in a closed-world assumption. These models are
pre-trained on large-scale datasets, designed to perform end-to-end relation ex-
traction and entity linking. Unlike OpenIE, they operate on a predefined, closed
set of relation types. REBEL uses a sequence-to-sequence approach to generate
triplets directly from text, while ReLiK employs a retrieve-and-link mechanism
designed for high accuracy. Their performance is typically characterized by a
trade-off between the precision gained from a fixed schema and the recall lim-
ited by it.

Gemma 2 9B-parameter model [28] represents the current frontier of few-
shot extraction using large language models, allowing us to assess the capabilities
of generative AI for this task. It is an LLM that we accessed via a self-hosted
Ollama client. The extraction process was designed to be both highly structured
and clinically focused, leveraging a combination of detailed prompt engineering
and constrained output formatting.
Prompt Engineering. We employed a few-shot prompting strategy to guide the
model. The prompt was carefully engineered with four key components:

1. Role-Playing: The model was instructed to act as a “stroke medicine ex-
pert” to ground its responses in the appropriate clinical context.

2. Entity and Relation Guidelines: Clear, explicit rules were provided for
the types of entities to extract (e.g., diseases, drugs, biomarkers) and the
format of relations (e.g., present tense verbs).

3. Few-Shot Examples: A set of high-quality, canonical examples (e.g., (tissue
plasminogen activator, treats, ischemic stroke)) was included to demon-
strate the desired output structure and semantic content.

4. Quality-Focused Instructions: The prompt directed the model to pri-
oritize “clinical relevance over completeness” and to only extract factual,
evidence-based relationships, thus actively filtering out noise.

Evaluation Framework. Our evaluation framework consists of two sequential
stages: a statistical characterization to analyze the structural properties of each
method extraction results, followed by a qualitative assessment of the triplets’
clinical relevance using an LLM-as-a-judge pipeline.
Statistical Analysis and Redundancy Filtering. First, we characterized the struc-
tural properties of each method extraction results, computing metrics for volume
(total triplets), diversity (unique entities and relations), and redundancy. This
initial analysis revealed that the unsupervised nature of OpenIE resulted in
a significantly larger and noisier set of triplets compared to the other methods,
with many being syntactically varied but semantically redundant (e.g., (stroke,
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causes, disability) vs. (disability, is caused by, stroke)). To ensure
a fair comparison, we implemented a similarity-based filtering step exclusively
for the OpenIE output before final evaluation.
Clinical Quality Assessment. Following the structural analysis, to evaluate the
clinical validity and semantic quality of the extracted facts, we implemented
an LLM-as-a-judge [23] pipeline using an LLM that was not seen during extrac-
tion, specifically GPT-4o-mini. The evaluation criteria were developed through a
structured meta-prompting process in which a strong LLM itself (o4-mini-high)
identified key dimensions relevant to assessing clinical utility from the perspec-
tive of a stroke specialist. While this approach does not replace expert clinical
validation, it offers a scalable proxy for estimating alignment with established
medical knowledge. The final framework included 10 distinct criteria, described
below, with each triplet rated on a 1 (poor) to 5 (excellent) scale:

LLM-as-a-Judge Evaluation Criteria

1. Clinical relevance (w1 = 3): Does the statement address important
clinical aspects of stroke diagnosis, treatment, prognosis, or preven-
tion?

2. Evidence strength (w2 = 2.5): Is the statement supported by
strong clinical evidence, such as randomized controlled trials, meta-
analyses, or large cohort studies?

3. Specificity (w3 = 1): How specific is the statement to stroke subtype
(ischemic, hemorrhagic, SAH) or patient population (age, gender, co-
morbidities)?

4. Guideline concordance (w4 = 2.5): Is the statement consistent
with current stroke guidelines (e.g., AHA/ASA, ESO)?

5. Pathophysiological accuracy (w5 = 1): Does the statement accu-
rately describe stroke pathophysiology or mechanisms (e.g., throm-
botic occlusion, vasospasm)?

6. Diagnostic utility (w6 = 1.5): Does the statement provide useful
information regarding stroke diagnosis or differentiation from mim-
ics?

7. Therapeutic implications (w7 = 3): Does it mention interventions
or management strategies with proven impact on outcomes?

8. Prognostic value (w8 = 1.5): Does it discuss factors that meaning-
fully affect stroke prognosis or recovery?

9. Population impact (w9 = 1): How broadly applicable is the state-
ment across populations or settings?

10. Potential for harm (inverted, w10 = 3): Does the statement avoid
misleading or harmful implications that could affect patient care?

To create a composite quality score (CQS) for each triplet, we computed a
weighted sum of the 10 criteria scores (si). The weights (wi) were determined
by a strong LLM acting as a domain expert (gpt-o1-mini-high) to reflect relative
clinical importance. The score for “Potential for Harm” (s10) was inverted to
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match the direction of the other criteria. The final CQS ranges from 20 to 100
and is calculated as: CQS =

(∑9
i=1 wi · si

)
+ w10 · (6 − s10). This aggregation

enables a nuanced comparison of the methods based on their ability to generate
clinically valid and useful knowledge.

4 Results

The results presented in this paper are based on a representative 10,000-abstract
subset of our full corpus, a scale necessitated by current computational con-
straints. To ensure the validity of our findings, this subset was strategically sam-
pled to mirror the word-count distribution of the complete 433k-abstract dataset,
thereby preserving a comparable average abstract length and variability.

Our evaluation of this subset reveals a clear performance hierarchy and dis-
tinct trade-offs across the four extraction paradigms. The aggregate results, sum-
marized in Table 1, show that while the rule-based OpenIE method is the most
prolific in terms of triplet volume, the LLM-based Gemma 2 9B model achieves
a substantially higher clinical quality score. A deeper analysis, broken down by
our 10 clinical criteria, highlights the specific strengths and weaknesses of each
approach.

Table 1. Comparison of Relation Extraction Methods on Stroke Abstracts

Method Total
Triplets

Unique
Triplets

Selectivity
Rate (%)

Unique
Relations

Unique
Entities

Dup.
Rate

Avg.
LLM
Score

OpenIE 327,404 313,898 0.0 52,174 186,053 4.1% 42.77
REBEL 142,760 125,738 0.0 169 75,807 11.9% 43.21
ReLiK 51,426 39,056 6.6 193 23,700 24.1% 50.92
Gemma 2 9B 72,591 70,516 13.9 13,095 79,021 2.9% 57.39

*Duplication Rate = (Total Triplets − Unique Triplets)/Total Triplets[%].
**Average LLM Score is the mean CQS across all triplets from a method.
***Average LLM Score for OpenIE is calculated on the filtered set to ensure
fair comparison; all other metrics for all methods are on the raw outputs.
****Note: The Avg. LLM Score is calculated using the full-precision source
data. The scores in Table 2 are rounded for presentation, which may cause
minor disagreements if used for recalculation.

The Gemma 2 9B model stands out as the top performer, achieving the high-
est average Composite Quality Score (CQS) of 57.39. As shown in Table 1, it also
had the highest selectivity rate at 13.9%. This high rate is not a weakness but a
key strength of the prompting-based approach: the prompt explicitly instructed
the model to extract only medically relevant information. Therefore, these “omis-
sions” represent an active, intelligent filtering of irrelevant text at the point of
extraction, a capability the other methods lack. The detailed criteria breakdown
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in Table 2 further reveals why the extracted triplets are superior: Gemma con-
sistently scores highest on the most heavily weighted criteria, including Clinical
Relevance (3.60), Pathophysiological Accuracy (3.36), and Potential for Harm
(Inverted) (3.60). This indicates that the LLM is demonstrating a nuanced un-
derstanding of the clinical context, prioritizing quality and relevance over sheer
volume.

At the other end of the spectrum, OpenIE exemplifies a classic quantity-over-
quality trade-off. While it generated a massive volume of triplets (over 327,000)
with zero selectivity rate, its average CQS was the lowest (42.77). Table 2 shows
a systemic failure across all criteria, with particularly low scores in Evidence
Strength (1.72) and Guideline Concordance (1.62). This suggests that its purely
syntactic, pattern-based approach is insufficient for a medical domain, producing
a high volume of factually shallow or clinically irrelevant statements that would
add significant noise to a knowledge graph.

The pre-trained, closed-set methods, ReLiK and REBEL, occupy a middle
ground and illustrate a distinct precision-recall trade-off. ReLiK achieved a re-
spectable CQS of 50.92, outperforming REBEL and OpenIE. Its strength lies in
its higher precision, scoring better across nearly all criteria compared to REBEL.
This comes at the cost of a 6.6% selectivity rate, though this filtering appears
less “intelligent” than the LLM’s, but a lot faster than it, likely resulting from an
inability to match its fixed schema rather than an assessment of relevance. Con-
versely, REBEL achieved 100% coverage but with a much lower CQS (43.21),
comparable to that of OpenIE. Both models are severely limited by their small,
predefined sets of relation types (193 for ReLiK, 169 for REBEL), preventing
them from capturing the rich diversity of information present in the literature.

Table 2. Average LLM Scores by Criterion per Method.

Criterion Gemma 2 9B OpenIE ReLiK REBEL Weight

Clinical Relevance (s1) 3.60 2.53 2.87 2.23 3.0
Evidence Strength (s2) 3.05 1.72 2.47 1.82 2.5
Specificity (s3) 2.79 1.76 2.32 1.78 1.0
Guideline Concordance (s4) 2.79 1.62 2.43 1.81 2.5
Pathophysiological Accuracy (s5) 3.36 1.81 2.65 2.01 1.0
Diagnostic Utility (s6) 2.48 1.63 2.18 1.71 1.5
Therapeutic Implications (s7) 2.47 1.56 2.15 1.72 3.0
Prognostic Value (s8) 3.00 1.83 2.37 1.87 1.5
Population Impact (s9) 3.02 1.87 2.47 1.89 1.0
Potential for Harm (s10, Inverted) 3.60 2.16 2.89 2.25 3.0
Average Score 3.02 1.85 2.48 1.91 –

The distinct clinical utility and methodological trade-offs of each extraction
approach are underscored by the representative triplets shown in Table 3. The
pre-trained models, ReLiK and REBEL, excel at extracting granular, factual
knowledge. They are shown to capture established clinical relationships with
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high precision, accurately identifying specific interventions for their indications
or linking guideline-recommended therapies to the conditions they treat. This
demonstrates their strength in mapping information to a fixed schema.

In contrast, OpenIE’s output illustrates its classic quantity-over-quality trade-
off. As seen in the table, it can capture both fundamental, high-value clinical facts
as well as more generalized statements that, while correct, lack the specificity
of the schema-based models. Finally, the LLM-based Gemma model showcases
a higher level of clinical synthesis. It moves beyond simple facts to extract nu-
anced, high-level insights about risk factors and preventative strategies, reflecting
a deeper contextual understanding. Collectively, these examples highlight how
different methods can surface complementary aspects of stroke knowledge, from
foundational facts to actionable clinical insights.

Table 3. Representative triplets extracted by each method.

Subject Predicate Object Method Score

Mechanical thrombectomy has use large vessel occlusion ReLiK 100.0
Clopidogrel medical condition treated acute ischaemic stroke REBEL 98.5
ischemic stroke subclass of stroke REBEL 100.0

Reperfusion therapy is treatment for acute ischemic stroke OpenIE 100.0
drug was administered within 3 hours OpenIE 100.0

Oral anticoagulation reduces the risk of stroke Gemma 100.0
hypertension increases stroke risk Gemma 98.0
Atrial fibrillation causes cardioembolic stroke Gemma 100.0

5 Conclusion

In this work, we addressed the critical challenge of constructing a specialized,
high-quality Knowledge Graph for the stroke domain from the vast and un-
structured biomedical literature. We conducted a systematic comparison of four
distinct relation extraction paradigms—rule-based, pre-trained, and large lan-
guage model-based—and introduced a novel, clinically-informed LLM-as-a-judge
framework to move beyond traditional evaluation metrics.

Our findings provide a clear performance hierarchy among the tested meth-
ods. The prompting-based LLM approach (Gemma 2 9B) proved to be clearly
superior, not just in generating the highest quality triplets (with average CQS:
57.39), but also in demonstrating an ability to intelligently filter for medical
relevance. In stark contrast, the rule-based OpenIE system, despite its massive
output, produced predominantly low-quality, noisy information unsuitable for
a clinical KG. The pre-trained models, ReLiK and REBEL, occupied a mid-
dle ground, highlighting a classic precision-recall trade-off but were ultimately
constrained by their fixed, limited schemas. This demonstrates that for complex,
specialized domains, the contextual understanding and flexible, open-schema ex-
traction capabilities of LLMs are paramount.

The primary limitation of our current study is the use of a 10,000-abstract
subset, necessitated by computational constraints. While this subset was strate-
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gically sampled to be representative, a full-scale analysis is a crucial next step.
Furthermore, while our LLM-as-a-judge framework offers a powerful, scalable
proxy for evaluation, it cannot replace validation by human clinical experts. In
addition, the computational effort required to evaluate triplets grows linearly
with the number of extracted triplets and can become substantial when exhaus-
tive extraction methods are used.

Future work will proceed along three main avenues. First, we will scale our
extraction pipelines to cover the entire 433K–document Stroke-PubMed corpus.
Second, instead of relying on a single “best” method, we will develop a hybrid-
ensemble strategy to build the first large-scale StrokeKG. This will leverage each
paradigm’s strengths—using the high-precision triplets from Gemma and ReLiK
as a reliable core, while cautiously integrating OpenIE’s broader (but noisier)
outputs after rigorous automated quality filtering. Third, to avoid the expense
of manual evaluation, we will train surrogate models on the 10k examples al-
ready evaluated, then use these fast, low-cost scorers to annotate the remaining
documents.
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