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Abstract. Single-cell RNA sequencing (scRNA-seq) enables fine-grained
insight into the heterogeneity of tissues and cellular responses. However,
the limited availability of high-quality datasets and the inherent noise in
scRNA-seq measurements hinder downstream analyses. Generative mod-
els, particularly diffusion models, offer a promising approach to synthe-
sizing realistic scRNA-seq data. This work builds upon the scDiffusion
framework and investigates the influence of various embedding strategies
on diffusion-based generation. We study three trainable approaches: an
autoencoder as in scDiffusion, an scANVI model, and an scTAG model.
Further, we investigate a feature selection approach using highly variable
genes (HVGs). For the guided diffusion, we use a four-layer MLP as well
as an scANVI-based classifier to explore conditional generation. We show
that the scANVI model produces the top-performing embedding, and the
diffusion model trained on this embedding yields the most realistic data,
with a class distribution closely resembling real data. We also show that
the used embedding metrics are not sufficient for deciding which embed-
ding is best suited for training another model. These findings highlight
the importance of representation choice when training a diffusion model
to generate new scRNA-seq data.
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful technology
that enables researchers to examine gene expression at the resolution of individ-
ual cells. This technology has revolutionized fields such as cancer biology, im-
munology, and developmental biology by uncovering cellular heterogeneity that
bulk RNA sequencing cannot resolve [9, 20]. However, the utility of scRNA-seq
is limited by its high cost, technical noise (e.g., dropout events, batch effects),
and the labor-intensive nature of annotation [9, 11]. These limitations make it
difficult to obtain sufficiently large and well-annotated datasets, particularly for
rare cell types.
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Fig. 1: Adapted scDiffusion framework [12]. Gene expression profiles are em-
bedded using four strategies: Autoencoder, HVGs, scANVI, and scTAG. Each
embedding used as training input for a diffusion model. Path 1) shows the un-
conditional sampling, and path 2) conditional sampling. Classifier guidance [2]
is applied using either a four-layer MLP or an scANVI decoder, followed by an
additional filtering step based on the classifier predictions.

Recent advances in generative machine learning have opened up new opportuni-
ties to address these challenges by generating realistic scRNA-seq data. Genera-
tive models can augment training data for supervised learning, aid in benchmark-
ing methods, and support simulation of hypothetical experiments. Among these,
deep generative models such as variational autoencoders (VAEs) [8, 6], generative
adversarial networks (GANs) [3, 21], and denoising diffusion probabilistic mod-
els [7, 19] have been explored for this purpose. The scDiffusion framework [12]
introduced a diffusion-based approach specifically tailored for scRNA-seq data
and has shown promising results in the unconditional and conditional generation
of scRNA-seq samples. Unconditional generation refers to generating samples
without aiming at a specific target class, differing from conditional generation,
where we want to generate samples of a specific class.
While scDiffusion provides a strong foundation, several questions remain open:
How do different latent representations affect the training of a diffusion model
and hence the quality of generated samples? Can feature-selection approaches,
such as using only a subset of genes, e.g., highly variable genes (HVG), perform
comparably as training input for a diffusion model? How are the cell types dis-
tributed if unconditionally generated? This study utilizes an adapted scDiffusion
framework to address the posed questions (see fig. 1).
Our main contributions can be summarized as follows:
(1) Evaluation of the influence of training a diffusion model on different input
embeddings created by the following embedding strategies: the original autoen-
coder of [12] as a baseline, scANVI [17], scTAG [18], and highly variable genes
(HVG) as a feature-selection approach. (2) Analysis of the relationship between
the quality of the input embeddings, derived via different clustering metrics, and
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the quality of the generated scRNA-seq data (Output in fig. 1). (3) Investigation
of two different classifiers, a four-layer MLP and a decoder of the scANVI model
[17], for guided diffusion.

2 Related Work

Recent work on scRNA-seq data synthesis includes statistical simulators such
as SPARSim [1] and scDesign3 [15], as well as deep generative models like
GRouNdGAN [21] with a GAN architecture and scDiffusion [12] with a dif-
fusion model, as mentioned in the introduction.

In this work, we build on the work of scDiffusion and expand their model. The
scDiffusion model employs a diffusion-based architecture that generates scRNA-
seq data by first training an autoencoder model and then using the embedding
created by this autoencoder to train a diffusion model. As an autoencoder, the
pre-trained foundation model SCimilarity [5] was used and then fine-tuned. The
diffusion model itself follows a denoising diffusion probabilistic model framework
and operates in the learned embedding space. Additionally, they may utilize a
distinct classifier, specifically a four-layer MLP, to perform guided diffusion.

Beyond data generation, representation learning is an essential step in an-
alyzing scRNA-seq data because they naturally come with several problems,
e.g, technical noise, biological noise, high dimensionality, dropouts, and others.
Via representation learning techniques, one can transform the data to a much
more suitable form for further downstream analysis [4]. VAE-based approaches,
e.g., scVI [10], scANVI [17], and graph-based models like scTAG [18] are com-
monly used. These models map high-dimensional gene expression profiles into
lower-dimensional latent spaces that preserve biological variation while reduc-
ing technical noise. Additionally, feature-selection in the gene space using highly
variable genes (HVGs) provides interpretable and robust alternatives, especially
when labeled data is scarce or model interpretability is important.

We investigate the impact of these representation learning methods on syn-
thesis performance. To the best of our knowledge, we are the first to explore the
relation between the quality of input embeddings and the quality of conditionally
and unconditionally generated data.

3 Methodology

We employ the scDiffusion framework [12] and exchange key components to in-
vestigate their influence on the generated samples. This can be seen in fig. 1.
The inputs and outputs are gene expression profiles of the original and the gen-
erated data, respectively. To examine how various input embeddings affect a
diffusion model’s performance, we utilized four different embedding strategies:
(1) The original autoencoder from the scDiffusion paper as a baseline, where
they used a fine-tuned SCimilarity model [5]. (2) Highly variable genes (HVGs),
as a subset of all genes, as these are often used for training models like scANVI
and should, in theory, contain most of the necessary information. Using HVGs
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only can be viewed as an embedding of the data in the gene space with reduced
dimensionality and hence could be a useful representation of the data. (3) The
embedding from scANVI [17], a supervised variational autoencoder, trained on
HVGs. scANVI extends scVI [10] by introducing semi-supervised learning for
cell-type annotation. It incorporates labeled and unlabeled data during train-
ing, enabling both representation learning and classification within a unified
probabilistic framework. (4) The embedding generated by scTAG [18], which
is an unsupervised model using a graph neural network that uses topological
structures of cell graphs derived from scRNA-seq data. It leverages relationships
between similar cells through message passing, allowing the model to learn bio-
logically meaningful embeddings from the cellular neighborhood context.
With these four strategies, we create four different input embeddings, which we
use to train a diffusion model. Therefore, we employed the original diffusion
model from scDiffusion [12]. Inside this diffusion model is a diffusion process
where noise is added to the input x0 in T = 1000 steps to obtain the noisy sam-
ple xT . Then, a denoising network is trained to invert this noise in T steps to
generate a new sample x̃0. Sampling new data from the trained diffusion model
can be done in two ways: (1) Unconditional sampling is performed without any
guidance. A random noise sample xnoise is given to the diffusion model, which
then generates a denoised point in T denoising steps. (2) Conditional sample
generation, where we employ the classifier guidance method [2], which necessi-
tates the use of a classifier. The core idea is to use the gradient of the classifier
during the denoising steps of the diffusion model to guide the denoising towards
the target class.
We utilize two distinct classifiers: (1) the original classifier as detailed in [12],
which is a four-layer MLP, and (2) the decoder from the scANVI model [17].
In generating conditional synthetic data, we incorporated a filtering process us-
ing the same classifier applied in guided diffusion. A generated sample x̃0 is
retained only if the classifier successfully predicts the target class; otherwise, the
sampling is redone.
The embedding models and classifiers are trained independently. The scANVI
classifier is completely separate from the scANVI model used for creating the in-
put embeddings. The diffusion model is trained with the embeddings generated
by our four approaches.

4 Experimental Setup

In this section, we will briefly introduce the datasets used and explain how we
trained the different models.

4.1 Datasets

We used two common datasets for evaluation:
Tabula Muris [14] contains nearly 100, 000 cells across 20 different organs

and tissues from mice (Mus Musculus). After processing the data with Cell-
Ranger from the 10x Genomics platform, 55, 656 of cells remain after quality



On the Role of Embeddings for Generating scRNA-seq Data 5

control, which are divided into 56 different cell types. In addition to the cell an-
notation, there are metadata such as mouse id, sex, etc. given in the dataset. The
annotation was achieved by experts using marker genes and unbiased clustering.

PBMC68k [20] dataset was created to study immune populations within
peripheral blood mononuclear cells (PBMC) and includes 68, 579 samples, which
were also sequenced by a droplet-based method. The data of this dataset comes
from a healthy donor (Donor A). The PBMCs are an important component of the
immune system and help to defend against infections. In this dataset, the cells are
separated into 11 different cell types. There are no further annotations present in
this dataset. Some of the cells in this dataset have overlapping functions, which
makes it very hard to categorize them [20]. Therefore, this dataset is considered
to be hard to classify.

4.2 Model Training

Embedding Model Training As a baseline, we use the same autoencoder archi-
tecture as SCimilarity [5], but we train the autoencoder from scratch, as well
as the other models scANVI and scTAG. The HVGs were obtained using the
scanpy package [16]. All embedding models were trained using the hyperparam-
eters from table A.3 in the appendix. The dataset was also split in a train and
test set with a ratio of 80% to 20%. The hyperparameters are taken from [12].
Diffusion Model Training For each of the four input embeddings we trained a
diffusion model with the same architecture to ensure comparability. The training
hyperparameters are detailed in in appendix in table A.4.
Classifier Training We use two classifiers: (a) a four-layer MLP of the original
implementation, with SiLU as activation functions and a dropout of 0.1, and (b)
the decoder component of an scANVI model. Both classifiers are trained with
incorporated noise of the diffusion process up to time step T/2. Earlier stages of
the denoised sample are considered too noisy. We also used early stopping with a
patience of 5 epochs for training the classifier. Detailed information on the used
hyperparameters is provided in table A.5 in the appendix.

4.3 Conditional and Unconditional Sampling

For the unconditional sampling, we generated as many samples as in the original
dataset are present, using the four diffusion models trained with different input
embeddings (see section 3). We do not give any constraints for the sample gener-
ation and evaluate how distinguishable the generated data are from the original
ones. Further, we investigate to what extent the generated data represent the
same class distribution as the original data.

Conditional sampling is achieved by combining each diffusion model, trained
with distinct embedding strategies, with a classifier, resulting in eight different
combinations of embedding strategy and classifier. For each class in the initial
dataset, we produce an equivalent number of samples as present in the original
dataset. Afterwards, we again investigate how hard it is to differentiate between
real and generated data. For this, we use a kNN-classifier with k = 5.
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Table 1: Clustering metrics for different embedding strategies on two datasets.

Embedding Tabula Muris PBMC68k

ARI ↑ NMI ↑ SS ↑ HMG ↑ ARI ↑ NMI ↑ SS ↑ HMG ↑

AE 0.4099 0.7704 0.1191 0.8621 0.2797 0.4584 0.0855 0.4889
HVG 0.6656 0.7938 -0.0658 0.7244 0.1681 0.4005 -0.0281 0.2803
scANVI 0.9777 0.9698 0.0915 0.9683 0.4655 0.5436 0.0521 0.5106
scTAG 0.2593 0.4639 0.3097 0.4376 0.0790 0.1424 0.4722 0.1187

5 Results

In the following sections, we will present the results of the four embedding models
and the two classifiers, evaluating their performance and how varying represen-
tation strategies impacted both unconditional and conditional generation of new
scRNA-seq data.

5.1 Embedding Model Comparison

The performance of the different embedding strategies was assessed using four
clustering metrics: Adjusted Rand Index (ARI), Normalized Mutual Informa-
tion (NMI), Silhouette Score (SS), and Homogeneity Score (HMG). We use the
implementation of these metrics of the scikit-learn library [13]. Arrows indicate
if higher values are better. The results on both the Tabula Muris and PBMC68k
datasets are summarized in table 1.

In the Tabula Muris dataset, scANVI embeddings outperformed in most met-
rics, achieving top scores: ARI at 0.9777, NMI at 0.9698, and HMG at 0.9683,
indicating a significant agreement between scANVI-derived cell clusters and the
ground truth labels. The baseline autoencoder showed results comparable to the
HVG method. Among the four evaluated strategies, the unsupervised scTAG
presented the lowest ARI, NMI, and HMG values, yet it showed superior re-
sults in SS, suggesting scTAG’s capacity to form distinct clusters unrelated to
actual cell types. Therefore, it is crucial to consider SS along with other metrics.
This analysis strongly suggests scANVI as the best embedding method in our
experiments.

In the PBMC68k dataset, scANVI again demonstrates best outcomes, achiev-
ing an ARI of 0.4655, NMI of 0.5436, and HMG of 0.5106, which are, as antici-
pated in section 4, worse than the Tabula Muris results. The AE is again compa-
rable to the HVG method and scTAG is good in forming clusters but these are
mostly unrelated to the actual cell types. The low ARI, NMI, and HMG values
indicate poor alignment with the ground truth labels, while the high SS reflects
well-formed clusters.

5.2 Unconditional Sampling

To evaluate the quality of generated scRNA-seq data based on different input
embeddings to a diffusion model, we employ a set of complementary metrics. We
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Table 2: Comparison of generation methods across multiple evaluation metrics.

Embedding Tabula Muris

PCC ↑ SCC ↑ MMD ↓ iLISI ↑ RF AUC ↓ KL-Div ↓ C-Dist ↓

AE 0.9993 0.9916 0.1214 0.8551 0.6900 0.6703 8.785
HVG 0.9990 0.9897 0.8165 0.0000 0.9961 2.3789 15.06
scANVI 0.9994 0.9925 0.1231 0.8703 0.7413 0.1898 8.317
scTAG 0.9978 0.9898 0.1427 0.1956 0.9499 0.5312 9.740

Embedding PBMC68k

PCC ↑ SCC ↑ MMD ↓ iLISI ↑ RF AUC ↓ KL-Div ↓ C-Dist ↓

AE 0.9996 0.9732 0.0314 0.8853 0.9877 1.722 6.159
HVG 0.9996 0.9637 0.4637 0.0000 0.9999 1.098 10.65
scANVI 0.9997 0.9737 0.1792 0.6817 0.9999 0.001 6.186
scTAG 0.9687 0.8564 1.1343 0.0000 1.0000 1.177 12.94

use the scikit-learn implementation [13] of the following metrics, except for the C-
Dist metric, which we implemented by ourselves. Pearson (PCC) and Spearman
correlation coefficients (SCC) measure the linear and rank-based association, re-
spectively, between gene expression profiles in the original and generated data,
capturing similarity in both magnitude and ordering. Therefore, we first calcu-
lated the mean over all cells for each gene and afterwards calculated the PCC and
SCC, resulting in a bulk-level gene profile comparison. This approach captures
population-level similarity but does not assess cell-level matching or heterogene-
ity. Maximum Mean Discrepancy (MMD) quantifies the distributional similarity
between datasets in a reproducing kernel Hilbert space, assessing how well the
global structure is preserved. iLISI (integration Local Inverse Simpson’s Index)
evaluates the degree of mixing between the real and a generated dataset, with
higher scores indicating better integration. The Random Forest AUC (RF AUC)
assesses how distinguishable real and generated cells are by training a classifier
to discriminate them, which means that a lower AUC suggests higher realism.
The Kullback–Leibler Divergence (KL-Div) measures how much the distribution
of generated data diverges from the real data distribution, with lower values in-
dicating better fidelity. For this we first calculated the class distributions, see
figs. 2 and 3, and then calculate the KL-divergence. Finally, the C-Dist metric
computes the Euclidean distance between the centroids of each cell type in the
real and generated datasets, averaged across all classes, to assess how well the
generative model preserves the spatial structure of cell identities in the embed-
ding space, where a lower value indicates better performance.

Initially, we validated our scDiffusion reimplementation by aligning our find-
ings with the original results. Our SCC, iLISI, and RF AUC outcomes were
comparable, yet our MMD score was inferior. This could be due to the exclusion
of the pre-trained SCimilarity model.
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Fig. 2: Comparison of class distributions of Tabula Muris. The upper figure shows
the first 28 cell types and the lower figure shows the last 28 cell types. The
mapping from number to cell type can be seen in table A.1 in the appendix.

Across both datasets, scANVI performed consistently the best. The PCC
and SCC are quite similar for all methods and datasets except for scTAG with
PBMC68k, where SCC is considerably lower. The diffusion models inferred the
overall gene expression pattern from the four embeddings. The MMD is quite
small for AE, scANVI, and scTAG, indicating distributional similarity, whereas
the HVG embedding performed quite poorly in comparison. The iLISI value
shows that the generated samples from the scANVI diffusion model and the AE
diffusion model are well integrated, meaning they exhibit less systematic devi-
ation, in contrast to scTAG. For the PBMC68k dataset, the generated samples
are even better integrated than the ones from the scANVI method. For the HVG
method we received a value very close to 0, meaning there is no integration of
the real and simulated data. For the Tabula Muris dataset we can further see
that the samples generated from the AE and scANVI method are harder to dis-
tinguish from the real data than the ones from the other two methods. For the
PBMC68k dataset all generated samples can easily be distinguished from the
real ones. The KL-Div indicates very strong matching of the class distributions
for the real samples and the generated samples from the scANVI method. This
can also be seen in figs. 2 and 3. The plot shows that none of the methods gen-
erated samples for class 18, as the original dataset contains unlabeled samples,
which are grouped in this class and labeled as Unknown. This is because we use
the trained decoder to get to the gene-space, where we use a trained classifier to
predict the label, but in this case, it can not predict the correct label, because it
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Fig. 3: Comparison of class distributions of the PBMC68k dataset. The mapping
can be seen in table A.2 in the appendix.

Fig. 4: UMAP plots of real (blue) and generated (orange) data for Tabula Muris
and PBMC68k using different embeddings for training diffusion models. The
used methods are from left to right: Base-autoencoder, HVG, scANVI, scTAG.

had no labels to train on. Lastly, the C-Dist metric tells us that the class centers
of the AE and scANVI methods are closest to the centers of the real data in the
latent space.
In conclusion, we can assume that the scANVI method’s embedding produces
the most stable and distributionally similar outcomes. This also matches with
the UMAP plots in fig. 4. The plots show the results of the unconditional gen-
eration together with the real samples for the four methods for Tabula Muris
and PBMC68k. On the left, the results for the baseline autoencoder method
are shown. These can be compared to the UMAP plots of the scDiffusion pa-
per, which show a very similar behaviour. Most parts are aligned quite well, but
there are some areas where a shift of the generated data can be seen. The next
image shows the results for the HVG method, where the generated data have
hardly any overlaps with the real data. The third image shows scANVI approach
results, where we can see the highest overlap of generated and real samples. The
last image shows the scTAG approach, where one can see some overlap, but large
parts of the generated data are not located where the real data are.
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Table 3: Performance comparison of a binary kNN classifier in distinguishing
real from generated data. The closer the values are to 0.5, the harder it was for
the kNN classifier to distinguish real and generated data. All values are macro
averages over all classes.

Tabula Muris PBMC68k

AE HVG scANVI scTAG AE HVG scANVI scTAG

Base Acc 0.66(±0.11)0.95(±0.12) 0.70(±0.12) 0.75(±0.14) 0.55(±0.06) 0.88(±0.13) 0.52(±0.08)0.86(±0.16)

AUC 0.78(±0.15)0.96(±0.11) 0.84(±0.14) 0.83(±0.16) 0.66(±0.08) 0.96(±0.08) 0.59(±0.09)0.92(±0.10)

scANVI Acc 0.71(±0.13) 0.95(±0.12) 0.70(±0.14)0.81(±0.14) 0.57(±0.09) 0.87(±0.13) 0.51(±0.03)0.90(±0.14)

AUC 0.84(±0.15) 0.96(±0.13) 0.83(±0.15)0.90(±0.15) 0.71(±0.12) 0.95(±0.07) 0.58(±0.08)0.95(±0.07)

5.3 Conditional Sampling

As explained in section 4.3, we used a filtering mechanism where only if the clas-
sifier correctly labeled the generated data point with the target label, the sample
was kept. Because of this, we can not simply use our classifier to evaluate the
generated samples. Therefore, we used a kNN classifier with k = 5, which is
trained to distinguish between real and generated data, meaning that accuracy
values around 0.5 show that the kNN classifier can not differentiate between real
and generated data. Moreover, to account for class imbalance and ensure robust
evaluation, we computed the area under the curve (AUC). The reported values
of table 3 are averages over all cell types. In order to get useful results and avoid
the curse of dimensionality, we used a PCA before calculating the metrics. The
results can be seen in table 3, where we can see that the representations from the
autoencoder and scANVI performed the best. The four-layer MLP base classifier
demonstrated a slightly superior performance to scANVI. For Tabula Muris and
the autoencoder method, the base classifier outperformed the scANVI classi-
fier, although their results overlap within standard deviation. Accuracy rates of
0.66% and 0.71% show the kNN classifier struggles to reliably differentiate real
and generated data. The HVG results with accuracies of 0.95% and 0.96% show
that the real and generated samples are easy to differentiate. The scANVI ap-
proach performed similar to the autoencoder and generated hard to distinguish
samples. The results for scTag are worse than scANVI and the autoencoder re-
sults, particularly with the scANVI classifier. PBMC68k findings mirrored this
trend, but the results of scTAG dropped to an accuracy of 0.86% and an AUC
of 0.92%, which is a comparable result to using HVGs. As observed, while the
clustering metrics in table 2 indicate the encoder has more difficulty with the
PBMC68k dataset, sample generation is simpler for this dataset, possibly due
to its fewer classes. In summary, our results indicate that the autoencoder and
scANVI method generated the best target cell type samples, with minimal in-
fluence from the classifier. Additionally, using HVGs as embedding results in
distinguishable samples, thus making HVGs an unsuitable strategy.
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6 Conclusion

This paper explored the effect of different embeddings for training a diffusion
model for data generation of scRNA-seq data. We investigated the quality of four
different embedding strategies and evaluated their quality, where the scANVI
approach yielded the best results. Then we compared the results of the uncondi-
tional generation of samples with four diffusion models, each trained on a differ-
ent input embedding. While scANVI excelled in clustering metrics, surpassing
the autoencoder, the performance of unconditional and conditional sample gen-
eration was similar, as can be seen in table 2. Moreover, despite the challenges
in generating a good embedding with the PBMC68k dataset, the results from
both unconditional and conditional sampling were better. This shows that the
choice of the embedding significantly impacts the quality of the generated data,
as taking only HVGs is impractical. However, initial tests like clustering metrics
offer insights into the latent representation, but are not sufficient to decide which
embedding will perform the best, as in our experiments with the autoencoder
and scANVI approach.

This paper presented an initial exploration of how different embeddings af-
fect the training of diffusion models for single-cell data generation. While our
results demonstrate that the choice of embedding influences generation quality,
our evaluation remained empirical. In particular, we observed that commonly
used clustering metrics may not adequately reflect the quality of generated sam-
ples. This limitation highlights important directions for future research, includ-
ing evaluating the role of embeddings in other generative architectures such as
GANs. Moreover, it raises a fundamental question: can we identify metrics that
reliably assess the usefulness of latent representations as input for generative
models?
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