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Abstract. Semi-supervised learning (SSL) offers the potential to im-
prove predictive performance by exploiting unlabeled data alongside lim-
ited labeled examples.While SSL has demonstrated success in many ap-
plications, it is not guaranteed to outperform traditional supervised learn-
ing and can, in some cases, achieve worse predictive performance. The
success of SSL methods relies on certain assumptions about the relation-
ship between the descriptive attributes and corresponding labels, such
as low-density separation and smoothness assumptions. Despite the risk
of performance degradation, the conditions under which SSL performs
well (including the validity of SSL assumptions in real-world data) are
poorly understood and seldom investigated.
In this study, we investigate the viability of semi-supervised learning for
mitotic phase classification using Raman spectroscopy data. Determin-
ing the mitotic phase of a cell has numerous important applications in
biology, medicine, and other fields. This task is also particularly well-
suited for semi-supervised learning, as obtaining labels involves labo-
rious analysis of microscopy images by experts. We evaluate two SSL
approaches: semi-supervised predictive clustering trees (SSL-PCTs) and
semi-supervised masked autoencoders, and compare their performance
against supervised baselines across varying amounts of labeled data.
Our initial findings indicate that these methods generally fail to out-
perform supervised methods. We assess the low-density separation and
smoothness assumptions using inter- and intra-class distances and lo-
cal class homogeneity, finding that our spectroscopy data mostly vio-
late these assumptions. In experiments limited to biologically distinct
mitotic phases that comply with SSL assumptions, SSL-PCTs outper-
formed supervised ones demonstrating the critical role of data structure
in determining the success of semi-supervised methods.

Keywords: Semi-supervised learning · Raman imaging · Cell mitosis ·
Predictive Clustering Trees · Masked Autoencoders
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1 Introduction

Traditional supervised machine learning algorithms rely solely on labeled data
for model training. Consequently, to achieve satisfactory predictive performance,
they often need a large number of labeled training examples. However, in many
real-world domains, labeled data is scarce due to the expensive and/or time-
consuming labeling procedure, which can severely limit the performance of su-
pervised methods. To address this limitation, semi-supervised learning (SSL)
techniques have emerged [1]. These methods use both labeled and unlabeled
data to enhance predictive performance, based on the premise that unlabeled
data is typically abundant and easily available, offering an opportunity to im-
prove model training.

A wide variety of SSL algorithms and techniques have been developed, and
SSL has been applied across diverse tasks [5]. These developments have led to
some striking successes: In certain cases, state-of-the-art SSL methods achieve
predictive performance nearly on par with fully-supervised learning even when
only a fraction of the dataset is labeled [12]. However, despite its promise, SSL is
not guaranteed to yield improvements in every situation. Researchers have long
observed that incorporating unlabeled data can sometimes fail to help and may
degrade a model’s predictive performance [8, 5, 12].

Such negative outcomes can be expected when the assumptions of SSL al-
gorithms are violated. SSL methods typically rely on some of the core SSL as-
sumptions [1]: the smoothness assumption (if two samples x and x′ are close in
the descriptive space, their labels y and y′ should be the same); the low-density
separation assumption (the decision boundary should lie in a low-density region
of the input space); and the manifold assumption (data points lying on the same
low-dimensional manifold should have the same label).

Despite the risk of performance degradation in semi-supervised learning, the
conditions under which SSL is effective are poorly understood and rarely inves-
tigated. Most studies focus on developing new SSL methods or demonstrating
improvements on specific benchmarks, often assuming that key conditions (such
as the smoothness or low-density separation assumptions) hold true. Very few
works analyze negative outcomes of SSL in light of these assumptions, examine
when they are valid, or propose approaches for such analysis. One likely reason
for this is publication bias against negative findings [18].

In this study, we examine a case study particularly well-suited for semi-
supervised learning: mitotic phase classification using Raman imaging (see Sec-
tion 2 for details). We use this task to probe the effects of the low-density sepa-
ration and smoothness assumptions on the performance of two recent SSL meth-
ods: semi-supervised predictive clustering trees [9] and semi-supervised masked
autoencoders [14]. Initial results demonstrate that these methods largely fail to
outperform their supervised counterparts. In further analysis, we show that the
low-density separation and smoothness assumptions can be empirically assessed
using inter- and intra- class distances and local class homogeneity, revealing that
our spectroscopy data largely violates these assumptions. In subsequent experi-
ments targeting biologically distinct mitotic phases that better comply with SSL
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assumptions, semi-supervised predictive clustering trees consistently outperform
their supervised counterparts.

This study underscores the importance of understanding how data structure
aligns with the inner mechanics of SSL methods and proposes a way to estimate
the compliance of data with the key SSL assumptions.

2 Case Study: Mitotic Phase Classification Using Raman
Imaging

During mitosis, a cell undergoes five phases (pro-, prometa-, meta-, ana-, and
telophase) during which the DNA of the cell’s nucleus is split into two equal sets
of chromosomes, creating two daughter cells [11]. Understanding the mitotic
phase of a cell can be very useful for various biological, medical, and other
applications. For instance, in cancer research, identifying cells in different stages
of mitosis can help determine the aggressiveness of tumors and guide targeted
therapies [4]. In agriculture, understanding meiosis (i.e., a process similar to
mitosis that produces four non-identical daughter cells) is important for plant
breeding, as it allows for the manipulation of plant cells to produce desirable
traits [2].

Determining the mitotic phase of a cell typically requires analysis of micro-
scope images by a human expert. The most common technique for obtaining
these images is fluorescence microscopy, which involves staining cells with fluo-
rescent dyes to visualize cellular structures and organelles. However, these dyes
can be cytotoxic, potentially damaging the sample and confounding measure-
ments [3]. A non-invasive, in vivo alternative for analyzing cell cycle dynamics is
Raman spectroscopy, which does not require staining. This technique works by
shining a laser onto a sample and measuring inelastic light scattering to provide
insights into the molecular structure and composition of cells [15, 16].

Due to the large number of cells that can be present on a single microscope
slide and the similarity between mitotic and normal nuclei, annotating cells with
their mitotic phases remains a challenging task for humans. Consequently, ma-
chine learning systems have been developed to assist experts in mitosis classifica-
tion [10]. However, due to the aforementioned laborious annotation procedures,
the labeled training examples for mitotic phase classification are limited. This
calls for machine learning approaches that can operate effectively in regimes with
limited availability of labeled data, such as semi-supervised methods.

In this work, we investigate the viability of semi-supervised machine learn-
ing methods for classifying mitotic phases based on Raman spectroscopy data.
Specifically, we consider semi-supervised predictive clustering trees and random
forests [9], which were designed for tabular data, as well as semi-supervised deep
neural networks based on masked autoencoders, which were designed specifically
for imaging data [14].
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3 Methods

For mitotic phase classification from Raman imaging data, we consider two recent
state-of-the-art semi-supervised methods: semi-supervised predictive clustering
trees (SSL-PCT) [9] and semi-supervised masked autoencoders (SSL-MAE) [14].
Below, we briefly describe these methods, while more details can be found in the
original publications.

3.1 Semi-supervised Predictive Clustering Trees

Predictive clustering trees (PCTs) build upon traditional decision trees, enabling
predictions of more complex and structured outputs. In PCTs, decision trees are
considered as a hierarchy of clusters, with the root cluster containing all the data.
As tree growth progresses from root to leaves, the data is recursively split into
smaller clusters. The algorithm used to construct the tree evaluates potential
splits based on a variance function. In the semi-supervised variant of PCTs, the
variance function accounts for both descriptive and target attributes, allowing
the model to use both labeled and unlabeled data:

V arf = w · V arf (Y ) + (1− w) · V arf (X), (1)

where w ∈ [0, 1] controls the relative contributions of the target space (Y ) and the
descriptive space (X) to the variance function V arf (with only the descriptive
space available for unlabeled examples). The w parameter is crucial for the
flexibility of the model, as it enables learning across a range from fully supervised
(w = 1) to fully unsupervised (w = 0) scenarios. By adjusting the importance of
unlabeled examples through the weight w, the level of supervision can be tailored
for each dataset, helping to mitigate the risk of performance degradation when
using unlabeled data. Semi-supervised random forests are built using SSL-PCTs
as base learners. Note that

Semi-supervised PCTs and random forests are implemented in the freely
available CLUSplus framework4 [13].

3.2 Semi-supervised masked autoencoders

SSL-MAE is built on the Masked Autoencoders (MAE) framework, a popular
self-supervised method that employs masked image modeling (MIM) as a pretext
task for learning representations [17]. Unlike traditional two-stage self-supervised
learning methods, SSL-MAE integrates both self-supervised and discriminative
learning in a unified, end-to-end architecture. An overview of SSL-MAE is pro-
vided in Figure 1. The self-supervised component, inspired by SimMIM [17],
uses unlabeled data for representation learning. Simultaneously, a discrimina-
tive classifier in the model extracts supervision from the limited labeled data.
Both components share a common encoder, and the model is optimized with
4 https://github.com/knowledge-technologies/clus
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Fig. 1. Overview of SSL-MAE (image adapted from [14]). In (a), labeled (xl) and
unlabeled (xu) images are divided into patches, and a fraction of these patches is
randomly masked. In (b), a vision transformer encoder processes both labeled and
unlabeled patches to produce latent representations. The supervised objective Ls in
(c) is computed solely on labeled (and unmasked) patches for classification. Meanwhile,
the unsupervised objective Lu in (d) reconstructs the masked regions of both labeled
and unlabeled images via an ℓ1 pixel-regression loss. In (e), the two losses are combined
through a weight w, which regulates the degree of supervision during training. During
inference, only the encoder (b) and classification head (c) are used on full (unmasked)
test images.

a joint learning objective aimed at enhancing the discriminative power of the
learned features, ultimately improving prediction accuracy. Similarly as in SSL-
PCTs, a mechanism is incorporated into the joint loss to regulate the supervision
level and provide flexibility during the learning process, resulting in the following
loss function of SSL-MAE:

L = w · Ls + (1− w) · Lu, (2)

where Ls and Lu are the supervised and the unsupervised loss terms, respec-
tively, and w ∈ [0, 1] is a weight that balances the amount of supervision to the
overall learning objective.

4 Data

A dataset comprising of 298 cells with annotated mitotic phases was obtained
from the Synthetic and Systems Biology Unit, Biological Research Centre, Szeged,
Hungary. Below we provide a short description of the data, while more details
can be found in the paper by Voros et al. [16].

Henrietta Lacks (HeLa) cells were cultured on glass slides and incubated for
24h. The nuclei of the cells were stained and widefield fluorescence images were
obtained using a Leica TCS SP8 confocal laser scanning microscope. The mitotic
cells were manually identified by an expert using the fluorescence microscope and
annotated with five mitotic phases (pro-, prometa-, meta-, ana-, and telophase)
or an interphase (i.e., a phase prior to mitosis). The final dataset consists of 53,
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29, 46, 97, 19, and 54 cells annotated as inter-, pro-, prometa-, meta-, ana-, and
telophase, respectively.

The positions of cells were transferred to a NT-MDT Spectrum Instruments
Ntegra II Raman–AFM microscope system using registration points and a cus-
tom software transformation. Raman imaging was performed with a high-resolution
system, capturing spectra from single cells. The Raman spectra were collected
over a range from 439 cm-1 to 3228 cm-1, with each spectrum acquired in 1.2
seconds. The spatial resolution was 1 µm, and each spectral map covered an
area of 24 µm × 24 µm, which was then cropped to exclude neighboring cells
and minimize background interference.

43
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−1

Cell 1: Interphase

32
28

 c
m

−1

Cell 2: Anaphase Cell 3: Telophase

Fig. 2. Examples of Raman images of three cells in different phases. The first row
shows images at the lowest wavenumber, while the second row shows images at the
highest wavenumber considered.

The data was then preprocessed by removing cosmic rays, normalizing inten-
sity, and fitting the spectra to a reference spectrum using a custom algorithm
(for details, see Voros et al. [16]). Each cell was imaged with 1600 different
wavenumber, in NxM spatial positions, where N and M vary between 15 and
24. To make the spatial dimensions consistent, we resized each grid to 15x15
using linear. The examples of Raman images are shown in Figure 2.

Since SSL-PCTs are designed for tabular data, they cannot directly process
3D imaging data (with dimensions 1600x15x15). As a result, we flattened the
data for each cell into a 1D vector of length 360,000. To address the issue of high
dimensionality, we applied Principal Component Analysis (PCA) and retained
the first 263 principal components, which account for 95% of the variance in the
data. In contrast, the SSL-MAE method was directly fed with the 3D imaging
data, preserving the spatial information.
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5 Experimental design

Mitotic phase prediction was formulated as a multi-class classification problem
with 6 classes: inter-, pro-, prometa-, meta-, ana-, and telophase. We were pri-
marily interested in investigating if unlabeled data can help semi-supervised
methods outperform the classical supervised methods. To this end, we compare
semi-supervised predictive clustering trees (SSL-PCT), semi-supervised random
forests (SSL-RF), and semi-supervised masked autoencoders (SSL-MAE) to their
supervised counterparts, SL-PCT, SL-RF, and SL-MAE, respectively.

To assess the impact of unlabeled data on classification performance, we used
different amounts of labeled data: 5%, 10%, 25%, and 50%. The unlabeled data
was extracted from the original labeled dataset by randomly selecting examples
and temporarily removing their labels. Algorithm performance was evaluated on
a test set consisting of these unlabeled examples, with their labels restored. The
random sampling process was repeated five times with different initializations,
and the final performance metrics were reported as the average across the five
runs.

The weight parameter w for SSL-PCTs and SSL-RFs was optimized via in-
ternal 5-fold cross validation on the labeled part of the training set while using
the available unlabeled data. The weight parameter of SSL-MAE was set to 0.5,
since this value provides generally good performance [14]. SSL-PCTs and SSL-
RFs are, on the other hand, more sensitive to the w parameter, hence it was
optimized. The supervised counterparts of these methods were achieved by (i)
supplying the methods only with the labeled data and (ii) setting the w param-
eter to 1, effectively cancelling out the contribution of the descriptive attributes
in variance calculation for SSL-PCTs and unsupervised loss for SSL-MAE. The
SSL-PCTs were pruned with the M5 pruning technique, while SSL-RFs were
built with 100 unpruned trees. SSL-MAE was trained for 100 epochs by using
the AdamW optimizer with a base learning rate of 1×10−3 using a cosine learn-
ing rate scheduler, a mini-batch of 64, and a mixed precision of training to speed
up the training process and reduce memory consumption.

The performance of the algorithms was evaluated using accuracy and one-
miss accuracy. The latter metric considers a prediction successful if the predicted
class is at most one phase away from the actual mitotic phase. This metric was
chosen because consecutive mitotic phases are often similar, and most misclas-
sifications occur between adjacent phases.

6 Results

6.1 Predictive performance of the methods

The results of the experimental evaluation are presented in Table 1. In most
cases, the semi-supervised algorithms failed to outperform their supervised coun-
terparts, with one exception: for 5% labeled data, SSL-PCT outperformed SL-
PCT and achieved the best overall accuracy for that fraction. However, in terms
of one-miss accuracy, which allows for a single mitotic phase deviation, none
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of the semi-supervised methods improved over supervised learning. Overall, su-
pervised random forests tend to perform best with 25% or more labeled data,
while for smaller fractions, the best performance is divided between SSL-PCT
and SL-MAE. The SL-MAE and SSL-MAE methods showed some instability,
with deteriorating accuracy with 50% of the labeled data.

Table 1. Comparison of predictive performance of supervised and semi-supervised
methods across different fractions of labeled data. For each fraction, the best result is
marked in bold.

Accuracy One-miss Accuracy
Method 5% 10% 25% 50% 5% 10% 25% 50%
SL-MAE 0.208 0.317 0.317 0.150 0.542 0.533 0.533 0.567
SSL-MAE 0.142 0.208 0.317 0.250 0.358 0.483 0.533 0.408
SL-PCT 0.206 0.236 0.251 0.339 0.466 0.452 0.500 0.572
SSL-PCT 0.214 0.229 0.231 0.291 0.477 0.473 0.536 0.592
SL-RF 0.200 0.265 0.364 0.395 0.505 0.497 0.583 0.632
SSL-RF 0.193 0.261 0.334 0.360 0.493 0.485 0.550 0.607

These results suggest that, in the context of the data at hand, semi-supervised
learning may not be suitable for mitotic phase classification using Raman spec-
troscopy. A possible reason is the small size of our dataset, which contains only
298 examples. Consequently, there are few labeled examples to learn from, and
the pool of unlabeled examples is also limited. Additionally, the overall accuracy
across all methods is low, suggesting that Raman spectroscopy may not provide
sufficient information for accurate mitotic phase prediction in this case. Raman
spectroscopy is known to be noisy particularly when applied to biological sam-
ples [6]. If the spectral data does not contain clear discriminative features related
to mitotic phases, both supervised and semi-supervised models may struggle to
extract meaningful information from the data. Additionally, SSL algorithms rely
heavily on the assumptions that unlabeled data can provide useful information
to reinforce the decision boundary. The two basic assumptions of SSL are that
data points with similar features should have similar labels (i.e., the smoothness
assumption) or that different classes are well-separated (i.e., the low-density sep-
aration assumption). However, if the spectral differences between mitotic phases
are subtle, these assumptions may not hold due to overlapping spectral features
and the additional unlabeled data may contribute little or even introduce noise.

6.2 Analysis of SSL assumptions

In an attempt to shed more light on the performance of the methods, we investi-
gate whether the previously mentioned SSL assumptions – namely, the smooth-
ness and the low-density separation assumptions – are satisfied in our data.
To this end, we calculated intra- and inter-class Euclidean distances on princi-
pal components used as input features for PCTs (Figure 3A). If the low-density
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Fig. 3. A) Average intra- and inter-class distances. The input features were normalized
before calculation of the distances. B) Proportion of samples of the same class within
each sample’s n-nearest neighborhood (∀n ∈ {1, . . . , 298}), averaged across all samples
of the same class for each n. Shaded areas represent the standard deviation

separation assumption holds, we would expect smaller intra-class distances (indi-
cating greater similarity among samples of the same class) and larger inter-class
distances (indicating dissimilarity among samples of different class). However,
our results show that this is only partially true. Most notably, the interphase
is the most compact class, exhibiting the greatest difference between intra- and
inter-class distances. This observation is consistent with biological expectation,
as interphase – preceding mitosis – is not part of the mitotic phases. To some
degree, similarly, anaphase appears markedly more compact than the other mi-
totic phases, aligning with its distinct biologocal characteristics. Anaphase is
considered the most distinct mitotic phase due to dramatic structural changes
in the cell: Sister chromatids are actively pulled apart to opposite poles of the
cell, which is visually distinct event compared to the other phases and it is the
only phase where chromosomes move rapidly towards poles, driven by shortening
microtubules [7].

The other mitotic phases are harder to distinguish, having similar intra- and
inter-class distances, suggesting violation of the SSL low-density separation as-
sumption. More specifically, the two consecutive phases, pro and prometa, are
similar to each other (and somewhat also to the interphase) making it more dif-
ficult for classifiers to establish firm decision boundaries. In these phases chro-
matin begins to condense and the nucleolus fades, which is a gradual rather
than abrupt transition, which can explain the observed similarity between these
phases. The meta and telo phases clearly lack distinct boundaries to other classes.

We next explore the validity of the smoothness assumption. For this pur-
pose, we calculate the local class homogeneity, i.e., the proportion of samples of
the same class within each sample’s n-nearest neighborhood, where size of the
neighborhood varies from 1 to 298 (i.e., the total number of samples). For each
n, the proportions are averaged across all samples of the same class (Figure 3B).
If the smoothness assumption holds, we would expect to observe mostly sam-
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ples of the same class among close neighbors, followed by a gradual decrease in
the same-class proportion as we move to more distant neighbours. Remarkably,
this behaviour is observed only for interphase (Figure 3B), which we identified
as the most compact among the classes, with the smallest intra-class distances.
The other classes clearly violate the smoothness assumption, as the same-class
proportion only slightly increases in closer neighbourhoods, or even increases in
more distant neighbourhoods, as seen in metaphase.

This analysis provides evidence that our Raman spectroscopy data largely
does not comply with the SSL assumptions, which may explain the observed un-
derperformance of the SSL methods (Table 1). However, certain classes, anaphase
and especially interphase, may be more suitable for SSL.

6.3 Predictive performance with better class separation
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Fig. 4. Predictive performance in classifying interphase versus all other phases. Samples
belonging to pro and prometa classes were removed to enhance class separability.

To test whether semi-supervised methods perform more favourably when
data complies with SSL assumptions and has better class separability, we con-
duct experiments to classify interphase versus all other phases. To further en-
hance class separability, we remove the pro and prometa classes, which resemble
interphase (Figure 3A). For this experiment, we consider only semi-supervised
PCTs and random forests, as they demonstrated more stable performance than
SSL-MAE. Additionally, the analysis of SSL assumptions was based on principal
components, which are only used as input features by PCTs.

The results demonstrate that, under these conditions, SSL-PCTs outperform
their supervised counterpart by a large margin across all fractions of labeled
data (Figure 4). SSL-RF, on the other hand, outperformed supervised random
forests only for 5% of labeled data, while for other fractions the performance is
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very similar to the one of SL-RF. This aligns with previous findings that semi-
supervised random forests are typically most beneficial in scenarios with few
labeled examples [9].

These results underscore the crucial role of the interplay between data struc-
ture and SSL assumptions in determining the performance of SSL methods.
When classes are well separated, unlabeled data has a better chance of enhanc-
ing decision boundaries and improving predictive performance. On the other
hand, in situations with fuzzy class boundaries, unlabeled data may degrade
predictive performance.

7 Conclusion

In this study, we explored the utility of semi-supervised learning (SSL) for mi-
totic phase prediction from Raman spectroscopy data. Determining a cell’s mi-
totic phase has numerous biological, medical, and research applications, while
Raman spectroscopy offers a non-invasive, in-vivo imaging technique. In the ini-
tial experiments, semi-supervised predictive clustering trees and semi-supervised
masked autoencoders largely failed to outperform their supervised counterparts.
In further analysis, we show that the low-density separation and smoothness
assumptions can be assessed using inter- and intra- class distances and local
class homogeneity. These metrics reveal that our spectroscopy data violates the
key SSL assumptions – low density and smoothness assumptions – which are
essential for SSL performance.

Consecutive mitotic phases closely resemble each other, making it difficult to
establish clear decision boundaries that can be reinforced by unlabeled data. No-
tably, the biologically distinct interphase, which precedes mitosis, was reflected
in the spectroscopy data and exhibited better class separation than other phases.
Semi-supervised models developed specifically for classifying interphase achieved
superior predictive performance compared to supervised models, highlighting the
crucial role of data structure in the success of semi-supervised methods.

This study is clearly limited by the small dataset size and the narrow selection
of semi-supervised learning methods. Future research should more systematically
investigate the interplay between data structure, SSL assumptions, and method
performance – using larger datasets and a broader range of SSL techniques –
to develop data-driven, verifiable guidelines for the effective application of semi-
supervised learning.
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