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Abstract. Foundation models have recently demonstrated strong per-
formance in various knowledge graph reasoning tasks. However, their ap-
plicability to temporal knowledge graphs (TKGs), where facts evolve over
time, remains underexplored. In this work, we investigate whether a foun-
dation model designed for knowledge graph reasoning can be adapted to
temporal reasoning through fine-tuning. Specifically, we extend and fine-
tune ULTRA [5] for temporal knowledge graph forecasting tasks. To this
end, we adapt the training and evaluation setting of the model, originally
designed to perform KG completion tasks, to KG forecasting tasks. Fur-
thermore, we allow ULTRA to incorporate temporal information of facts
and queries, in the form of quadruples, via positional encoding of times-
tamps. Experimental results on standard TKG benchmarks reveal that
fine-tuned ULTRA achieves competitive performance with state-of-the-
art (SOTA) supervised competitors, particularly on the ICEWS datasets.
These datasets emphasize entity-driven prediction over time, where re-
lational patterns are sparse and events such as diplomatic visits or nego-
tiations often occur once without strong temporal regularities. However,
on more structurally and temporally rich datasets like YAGO, GDELT,
and WIKI, ULTRA falls short of SOTA supervised models, which lever-
age relational temporal dynamics and evolving patterns more effectively.
These findings suggest that while static foundation models can be effec-
tively fine-tuned for certain types of temporal reasoning, they lack the
inductive biases necessary to fully capture evolving relational structures.
This underscores the development of foundation models explicitly tai-
lored for temporal knowledge graphs as a promising research direction
for mining and learning complex patterns from these systems.

Keywords: Temporal Knowledge Graphs · Graph Neural Networks ·
Foundation Models.

1 Introduction

Knowledge Graphs (KGs) have emerged as a powerful abstraction for repre-
senting structured knowledge across a wide range of domains, enabling tasks
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such as link prediction, question answering, and reasoning [10], which allow the
extraction of complex and semantically rich patterns from heterogeneous and
interlinked data. Recent advances in foundation models have shown promise
in unifying various KG reasoning tasks under a shared framework, achieving
strong generalization across datasets and tasks [5, 4]. These models, pre-trained
on large-scale static KGs and fine-tuned for specific downstream applications,
aim to offer scalability and adaptability without requiring training architectures
for every task. One prominent example is ULTRA [5], a graph neural network
(GNN)-based architecture that frames knowledge graph completion as a unified
classification problem over (subject, relation, ?) and (?, relation, object)
queries, being able to extend its reasoning over unseen entities and relations,
demonstrating competitive performance across multiple static KG benchmarks.

However, in many real-world applications, knowledge is not static but evolves
over time. Temporal Knowledge Graphs (TKGs) extend traditional KGs by as-
sociating each fact with a timestamp or a temporal interval, enabling reasoning
over dynamic and time-dependent information [1]. In particular, TKGs provide a
natural and expressive framework for modeling complex and evolving event data,
such as social interactions, geopolitical events, or dynamic biomedical records,
making them highly relevant for the analysis of massive and time-sensitive data
sources [12, 9]. Yet, reasoning over TKGs introduces unique challenges, including
temporal consistency, evolving relational patterns, and the sparsity of recurring
events [6, 7]. Unlike static KGs, temporal reasoning requires not only structural
understanding but also the ability to capture complex, time-sensitive patterns.
Despite the growing importance of TKGs, the applicability of foundation KG
models to temporal reasoning tasks remains underexplored. In this work, we ad-
dress this gap by investigating whether a foundation model designed for static
KGs can be adapted for TKG forecasting through fine-tuning. We choose UL-
TRA as a case study and modify its design and code to perform multistep
link forecasting, a task that requires predicting future quadruples over multiple
timestamps based on historical information of a temporal knowledge graph.

To this end, we make two key adaptations. First, we modify the training
and evaluation setup and the loss function of ULTRA, originally intended for
static KG completion, to fit the temporal forecasting setting. This distinction is
crucial because knowledge graph completion assumes access to the entire KG,
including both past and future quadruples relative to any given query. The model
operates under the assumption that the graph is fully available, and it learns to
infer missing links within that static snapshot. In contrast, temporal forecasting
imposes a stricter and more realistic constraint: the model can only observe the
TKG up to a certain timestamp, and must predict quadruples that occur in
the future. This makes forecasting inherently more challenging, as it requires
the model to learn temporal dynamics and anticipate unseen events without
relying on future context. Second, we augment ULTRA’s input representation
with explicit temporal signals by integrating positional encodings of timestamps
into the model. This enhancement enables the architecture to account not only
for the structural information of the graph but also for the temporal context
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in which events occur. In the temporal setting, it is crucial that the model
distinguishes between different instantiations of the same query across time.
For example, a quadruple (subject, predicate, object, t) may hold true at
time t but be invalid at another timestamp t’. By incorporating timestamp
encodings, ULTRA can learn to assign different scores to the same structural
triple depending on its temporal position.

Our empirical evaluation is conducted on widely-used TKG benchmarks, in-
cluding ICEWS14, ICEWS18 [6], YAGO [3], GDELT [12], and WIKI [8]. Results
show that the fine-tuned ULTRA model achieves competitive performance with
supervised SOTA baselines on datasets like ICEWS, which are characterized
by entity-centric predictions and sparse, non-repetitive relational patterns (e.g.,
diplomatic meetings, protests). These scenarios benefit from the model’s capac-
ity to generalize from entity-level dynamics without relying heavily on complex
temporal dependencies. In contrast, ULTRA underperforms on datasets such as
YAGO, WIKI, and GDELT, which feature richer temporal dynamics and more
structured, repeating relational patterns [15]. These results indicate that while
fine-tuning static foundation models can offer a promising starting point for
temporal reasoning, such models lack the inductive biases required to effectively
model evolving relational structures and time-dependent behaviors.

Our findings emphasize the limitations of naïvely extending static models
to temporal settings and highlight the need for dedicated foundation models
tailored to temporal reasoning. We argue that gathering a rich collection of
temporal knowledge graphs for pre-training, and designing inductive temporal
representations and sequence modeling techniques for a dynamic graph founda-
tional model, is a promising research direction for advancing the state of learning
complex patterns from temporal knowledge graphs.

Main Contributions. This paper makes the following key contributions: i) Adapt-
ing a foundation model for temporal reasoning. We extend the ULTRA
model, originally developed for static knowledge graph completion, to handle
temporal knowledge graph forecasting tasks. This includes modifications to the
training and evaluation pipeline, design of the loss function, and the integration
of temporal signals via positional encodings of timestamps, enabling the model
to reason over time-sensitive facts. Code is available on a Github repository4; ii)
Comprehensive benchmarking on temporal forecasting tasks. We eval-
uate the fine-tuned ULTRA on a multi-step forecasting task across several TKG
datasets, using the standard evaluation protocol for temporal link prediction.

2 Background

Problem definition. A Temporal Knowledge Graph (TKG) can be defined as an
ordered sequence of timestamped knowledge graph snapshots G = (G1,G2, . . . ,Gt, . . .).
Each snapshot Gt = (V,R, Et) represents the state of the knowledge graph at
a discrete time step t, where V is the set of entities, R is the set of relations,
4 https://anonymous.4open.science/r/ULTRA-D157/README.md
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and Et denotes the set of timestamped factual triples (or quadruples) observed
at time t. Each fact (h, r, v, t) ∈ Et consists of a subject entity h ∈ V, a re-
lation r ∈ R, an object entity v ∈ V, and a timestamp t. For example, the
quadruple (Angela Merkel, meet, Pope Francis, 2018-06-08) captures a tem-
poral fact indicating that a visit took place on the given date. In the context of
TKG forecasting, the goal is typically formulated as a link prediction task: given
a TKG observed up to time t and a query with missing subject or object, such
as (h, r, ?, t + k) or (?, r, v, t + k) for a future timestamp t + k, where k ∈ N+,
the model is expected to predict the most likely missing entity [13].

Temporal Knowledge Graph Forecasting. In recent years, the task of forecast-
ing future links in temporal knowledge graphs has gained increasing attention,
with a wide range of methods being proposed [8]. A significant line of research
has focused on combining graph neural networks with temporal modeling tech-
niques to capture both the structural and dynamic aspects of evolving knowledge
graphs. These methods typically encode the graph topology at each timestamp
while modeling temporal dependencies across snapshots using sequential archi-
tectures. Examples include approaches that use recurrent networks, such as RE-
Net [11] and RE-GCN [13], message-passing, and attention mechanisms to cap-
ture evolving patterns in entity and relation interactions. In addition to sequen-
tial GNN-based approaches, some works have explored alternative paradigms.
Reinforcement learning has been used to model multi-hop reasoning over time-
aware graphs, allowing the agent to simulate temporal exploration paths for
forecasting future events [17]. Other approaches, such as TLogic [14], rely on
logic-based inference, employing symbolic reasoning to discover temporal rules
that govern entity behavior over time. Furthermore, CyGNet [20] is based on
pattern repetition and frequency of past events and offers simpler yet effective
strategies by exploiting regularities in the temporal evolution of quadruples.

Graph Foundation Models. Recent years have seen a growing interest in devel-
oping graph foundation models (GFMs), that is, machine learning architectures
capable of generalizing across previously unseen graphs, tasks (such as node or
graph classification), and semantic vocabularies, i.e., meaning, related to links
between nodes. The overarching goal is to build unified models that can operate
out-of-the-box on arbitrary relational data, enabling transferability and reducing
the need for task-specific training. One notable example is ULTRA [5], which in-
troduces a framework for inductive reasoning over knowledge graphs with disjoint
entity and relation vocabularies. ULTRA learns relational representations con-
ditioned on their structural interactions, making it possible to perform zero-shot
inference on unseen KGs and further improve through fine-tuning. GraphAny
[19] addresses the fully-inductive node classification setting by modeling infer-
ence on new graphs as combinations of solutions from a family of LinearGNNs,
guided by an attention mechanism designed to generalize to new feature and
label spaces. In the domain of structured enterprise data, KumoRFM [4] pro-
poses a relational foundation model that can perform predictive tasks directly
on arbitrary relational databases without task-specific supervision. It combines
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table-agnostic encoding with a relational graph transformer and demonstrates
competitive performance across diverse applications. While most of these efforts
focus on static graphs, a first step toward temporal generalization is represented
by MiNT [16], a method designed for transfer learning on temporal graphs using
multi-network training. However, MiNT targets graph classification and does
not yet support inductive inference at the link or entity level. In our work, we
contribute to this emerging landscape by exploring the adaptation of a knowl-
edge graph foundation model, ULTRA, to the task of temporal knowledge graph
forecasting. We investigate whether pre-trained static KG representations can
be extended and fine-tuned to support inductive reasoning over evolving tempo-
ral data, bridging the gap between foundation models and time-aware relational
inference.

3 Methodology

3.1 Adapting the ULTRA Algorithm to TKG

How ULTRA works. Given a query (h, q, ?) over a static graph G, ULTRA
employs a three-step algorithm to obtain the scores p(h, q, v) for each possible
node v to be a tail of the initial query:

1. Lift the original graph G to the graph of relations Gr. Starting from a graph
G = (V,R, E), ULTRA first constructs a lifted representation (i.e., a higher-
level abstraction of the original graph) Gr = Lift(G), yielding a relation
graph Gr = (R,Rfund, Er) in which nodes correspond to distinct relation
types5. The edge set Er ∈ (R×Rfund×R) captures the interactions between
relations present in the original graph G. Four fundamental interaction types
are considered: tail-to-head (t2h), head-to-head (h2h), head-to-tail (h2t), and
tail-to-tail (t2t).

2. Obtain relative relation representations Rq|(q,Gr) conditioned on the query
relation q in the relation graph Gr. Given a query (h, q, ?) and the relation
graph Gr, ULTRA derives d-dimensional node embeddings Rq ∈ R|R|×d rep-
resenting all relations in G, conditioned on the specific query relation q. This
conditioning is realized by initializing the node q in Gr using the Indicatorr

function, and applying message passing through a GNN defined over Gr:

h0
v|q = Indicatorr(v, q) = 1v=q ∗ 1d, v ∈ Gr

ht+1
v|q = Update

(
ht
v|q,Aggregate

(
Message(ht

w|q, r) | w ∈ Nr(v), r ∈ Rfund
))

The graph neural network used at this stage, denoted GNNr, follows the
NBFNet [21] framework and employs a non-parametric DistMult [18] mes-
sage function combined with sum aggregation.

3. Using the relation representations Rq as starting relation features, run in-
ductive link prediction on the original graph G. With the query (h, q, ?) and

5 Resulting in 2|R| nodes when including inverse relations.
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the conditioned relation embeddings Rq obtained previously, ULTRA pro-
ceeds to run inductive link prediction on the original graph G. This step
leverages another GNN (again, based on NBFNet), where the initial feature
for the head node h is set to the corresponding query vector from Rq, while
other nodes are initialized to zero:

h0
v|u = Indicatore(u, v, q) = 1u=v ∗Rq[q], v ∈ G

ht+1
v|u = Update

(
ht
v|u,Aggregate

(
Message(ht

w|u, g
t+1(r)) | w ∈ Nr(v), r ∈ R

))
Each t-th GNN layer applies a non-linear function gt(·) to transform origi-
nal relation representations to layer-specific relation representations as Rt =
gt(Rq) from which the edge features are taken for the Message function.
g(·) is implemented as a 2-layer MLP with ReLU. After message passing, a
final MLP s : Rd → R1 produces logits p(h, q, v) indicating the likelihood
that node v completes the query (h, q, ?) as its tail entity.

Adding temporal information. Given a timestamped query (h, q, ?, qt), we add
a new Step 2b in the ULTRA Algorithm to take into account the temporal
information:

– (2b) Obtain relative timestamp representations Tq|(qt) conditioned on the
query timestamp qt. We introduce a time-encoding function cos(tω), which
utilizes features ω = {α−(i−1)/β}di=1 to encode each timestamps into a d-
dimensional vector. More specifically, we first map each timestamp t to a
vector with monotonically exponentially decreasing values tω ∈ (0, t] among
the feature dimension, then use cosine function to project all values to
cos(tω) ∈ [−1,+1]. Following the work that proposes this encoding function
[2], we set α = β =

√
d for all the datasets, and d equal to the embedding

dimension of ULTRA. Notice that ω is fixed and will not be updated during
training. As shown in Figure 1, the output of this time-encoding function has
two main properties that could help distinguish different timestamps: simi-
lar timestamps have similar time-encodings (e.g., the plot of t1, t2) and the
larger the timestamp the later the values in time-encodings converge to +1
(e.g., the plot of t1, t3 or t1, t4). To obtain relative timestamp representations
conditioned on the query timestamp qt, we compute Tq[z] as the embedding
of the time difference between timestamp z and the query timestamp qt, that
is Tq[z] = cos((qt − z)ω).

Then, we modify the entity-level link prediction component of ULTRA (Step 3)
to obtain scores for queries (h, q, ?, qt):

h0
v|u = Indicatore(u, v, q) = 1u=v ∗Rq[q] ∗ Tq[qt], v ∈ G

ht+1
v|u = Update

(
ht
v|u,Aggregate

(
Message(ht

w|u, g
t+1(r ∗ Tq[z])) | (w, r, v, z) ∈ Ez

))
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Fig. 1. Visualization of cosine-based time encoding across embedding dimensions for
different timestamp values. Time-encoding function that pre-process timestamp t into
a vector cos(tω). The x-axis is the vector dimension, and the y-axis is the cosine value.

3.2 Fine-tuning ULTRA on TKG forecasting

Training and evaluation setting. To adapt ULTRA for temporal knowledge graph
forecasting, we transition from a static completion task to a dynamic forecasting
setup. Specifically, instead of predicting missing entities in observed quadruples,
the model is trained to assign scores to potential future facts, quadruples, that
may occur at upcoming timestamps. To simulate this forecasting scenario, fol-
lowing previous works [13], we chronologically split the train set, reserving the
last 10% of the temporal snapshots as the prediction interval, while training is
performed on the preceding 90%. During training, it is essential to treat the same
fact occurring at different times as distinct instances. Accordingly, negative sam-
ples are generated by corrupting the head or tail entity of positive quadruples
at the same timestamp, ensuring the model learns time-specific representations.
The loss is computed independently at each timestamp t in the prediction inter-
val [ts, te], capturing the temporal evolution of the knowledge graph (see below).
For evaluation, we follow the time-aware filtering protocol proposed in [8]. Unlike
traditional filtering adopted by ULTRA, which removes all known true triples
regardless of time, time-aware filtering only excludes quadruples occurring at the
same timestamp as the test query. This avoids unfair penalization of the model
for ranking temporally valid quadruples higher than the target. Furthermore, to
prevent an information gap during testing, we allow the model to access true
quadruples from the validation set when making predictions on the test set, as
done in [8].
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Loss function. Following established practices in the literature [13, 11], ULTRA
is fine-tuned by minimizing the binary cross-entropy loss over both positive and
negative quadruples across time:

L =

te∑
t = ts

(− log p(u, q, v, t)−
n∑

i=1

1

n
log(1− p(u′

i, q, v
′
i, t)))

Here, (u, q, v, t) denotes a positive quadruple observed in the graph, while
{(u′

i, q, v
′
i, t)}ni=1 are negative samples generated by corrupting either the head

entity u or the tail entity v. These negative samples represent non-factual state-
ments at the current timestamp.

4 Experiments

Experimental Setup. We conduct our experiments following the well-established
evaluation protocol and dataset versions introduced in Gastinger et al. [8]. To
ensure a fair comparison, we adopt their dataset splits and report state-of-the-
art supervised model results from their work as baselines. Our evaluation focuses
on the multi-step forecasting setting, which is a more general and challenging
task compared to single-step forecasting, as it requires predicting quadruples
of multiple timestamps into the future. For fine-tuning ULTRA, we train the
model for a maximum of 10 epochs with early stopping based on validation
performance. We restrict training to the last 10% of temporal snapshots in the
training data. This approach balances the need for sufficient temporal context
with computational efficiency. Notice that we empirically observe that increasing
the training window beyond 10% does not lead to significant performance gains,
as also highlighted in previous works [13, 11]. Following [8], during inference,
ULTRA is allowed to leverage valid quadruples from the validation set as part of
the candidate pool when predicting on the test set, thus avoiding an information
gap between training and testing time intervals.

Datasets. We evaluate the fine-tuned ULTRA model and supervised baselines on
five widely-used temporal knowledge graph datasets: WIKI, YAGO, ICEWS14,
ICEWS18, and GDELT [8]. These datasets span diverse domains and temporal
characteristics. WIKI and YAGO are derived from encyclopedic sources and
capture long-term, structured relational quadruples evolving over time, such
as biographical or organizational events. In contrast, ICEWS14 and ICEWS18
are extracted from the Integrated Crisis Early Warning System and contain
geopolitical event sequences, often characterized by sparse relations and irreg-
ular, entity-centric patterns. GDELT, a large-scale open event dataset, records
real-time global news events and exhibits high temporal granularity and dy-
namic relational structures. Table 1 summarizes key statistics of each dataset,
including the number of entities, relations, and temporal quadruples. It also re-
ports the number of temporal snapshots used for training, validation, and testing
(Tr/Val/Te TS), based on the standard timestep-based data splits introduced in
[8].
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Table 1. Datasets statistics, timestep interval, and splitting points.

Dataset #Nodes #Rels #Train #Valid #Test Time Int. #Tr/Val/Te TS

ICEWS14 7128 230 74845 8514 7371 24 hours 304/30/31
ICEWS18 23033 256 373018 45995 49545 24 hours 239/30/34
GDELT 7691 240 1734399 238765 305241 15 min. 2303/288/384
YAGO 10623 10 161540 19523 20026 1 year 177/5/6
WIKI 12554 24 539286 67538 63110 1 year 210/11/10

Results. Table 2, Table 3, and Table 4 report the performance of ULTRA and
several supervised baselines on five standard TKG forecasting benchmarks under
the multi-step prediction setting with time-aware filtering. Across all datasets,
we observe that fine-tuning ULTRA leads to substantial gains over the zero-shot
version, confirming the benefit of adapting foundation models to the tempo-
ral setting. This is particularly evident in ICEWS14, ICEWS18, and GDELT,
where fine-tuning closes a significant portion of the performance gap with su-
pervised methods. Moreover, integrating timestamp-based positional encodings
(TE) further boosts performance on all datasets except YAGO. Notably, YAGO
is the only dataset in our benchmark that includes both timestamped and non-
timestamped facts, which likely explains why incorporating temporal encodings
does not yield improvements and suggests that temporal encodings may intro-
duce noise when applied to partially atemporal graphs. The ULTRA (TE +
FT) variant achieves results that are either on par with or very close to the
best supervised baselines on ICEWS14 and ICEWS18 datasets, where temporal
reasoning is primarily entity-driven, and relational patterns are sparse and ir-
regular [15]. In these cases, ULTRA proves highly competitive, occasionally even
outperforming all supervised competitors in metrics such as Hits@1 or MRR. In
contrast, on structurally richer and temporally regular datasets like GDELT and
WIKI, supervised models like RE-GCN and CyGNet maintain a notable lead.

In summary, these results show that while ULTRA is not yet able to fully
match SOTA supervised methods on datasets with strong relational temporal
regularities, it can reach comparable performance on more entity-driven tem-
poral KGs. The consistent benefit of temporal encoding across most bench-
marks also highlights the value of explicitly modeling time in foundation models
adapted for TKG reasoning.

5 Conclusion

In this work, we investigated the potential of adapting knowledge graph foun-
dation models to temporal knowledge graph (TKG) forecasting tasks. By fine-
tuning ULTRA, a recent foundation model for KG reasoning, we demonstrated
that such models can achieve competitive results with supervised approaches on
several benchmarks, particularly on datasets where temporal reasoning is largely
driven by entities and exhibits sparse relational patterns. Our approach involved
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Table 2. Results for temporal knowledge graph forecasting on ICEWS14 and ICEWS18
in the multi-step setting with time-filter triples. TE stands for time encoding, FT for
fine-tuned.

Model
ICEWS14 ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-GCN [13] 37.82 27.86 42.14 57.50 29.03 19.52 32.66 47.50
RE-Net [11] 37.00 27.80 40.80 54.92 27.86 18.47 31.43 46.19
CyGNet [20] 36.12 26.66 40.28 54.54 26.01 16.69 29.59 44.43
TLogic [14] 35.48 26.54 39.59 53.11 24.01 15.59 27.23 41.20

ULTRA (Zero-shot) 26.86 17.99 30.07 44.60 11.11 06.13 12.07 21.42
ULTRA (Fine-tuned) 35.37 26.14 39.20 53.56 26.71 16.88 30.32 46.26
ULTRA (TE + FT) 37.72 27.89 42.08 57.13 28.33 18.02 32.34 49.14

Table 3. Results for temporal knowledge graph forecasting on YAGO and WIKI in
the multi-step setting with time-filter triples. TE stands for time encoding, FT for
fine-tuned.

Model
YAGO WIKI

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-GCN [13] 75.40 71.75 77.67 81.70 62.72 59.48 64.89 67.87
RE-Net [11] 58.21 53.44 61.31 66.26 49.47 47.21 50.70 53.04
CyGNet [20] 69.02 61.38 74.29 83.42 58.26 52.51 62.41 67.56
TLogic [14] 66.93 63.14 70.63 71.58 63.99 61.31 66.36 68.22

ULTRA (Zero-shot) 63.11 55.33 69.11 76.71 45.68 37.25 51.41 61.91
ULTRA (Fine-tuned) 65.26 56.11 70.71 82.24 50.15 40.10 57.60 68.53
ULTRA (TE + FT) 63.64 54.05 69.55 82.35 53.43 45.10 58.74 68.73

extending ULTRA with temporal encodings and adapting its training and eval-
uation to the forecasting scenario, where the model must predict future events
without access to future snapshots. Results highlight both the strengths and
limitations of static foundation models in temporal contexts: while fine-tuned
ULTRA performs well on certain benchmarks, it still lags behind state-of-the-
art methods on temporally structured datasets like GDELT, YAGO, and WIKI.
This can be partly attributed to the simplicity of our extension, which enables
fine-tuning without introducing any new learnable parameters. Although this de-
sign ensures efficiency and compatibility with pretrained ULTRA checkpoints,
more expressive alternatives remain unexplored. Additionally, as state-of-the-art
methods often combine GNNs with recurrent modules, integrating ULTRA with
RNN-based components is a promising direction for future work. Looking ahead,
gathering large-scale, heterogeneous TKGs for pre-training, especially from less
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Table 4. Results for temporal knowledge graph forecasting on GDELT in the multi-
step setting with time-filter triples. TE stands for time encoding, FT for fine-tuned.

Model
GDELT

MRR H@1 H@3 H@10

RE-GCN [13] 19.64 12.47 20.85 33.62
RE-Net [11] 19.71 12.48 20.90 33.93
CyGNet [20] 19.08 11.88 20.29 33.07
TLogic [14] 17.68 11.26 18.90 30.29

ULTRA (Zero-shot) 06.53 02.94 06.03 11.46
ULTRA (Fine-tuned) 16.42 08.96 17.31 31.35
ULTRA (TE + FT) 18.56 12.03 20.17 33.54

explored domains like socio-financial systems or biomedicine, may unlock new ca-
pabilities for temporal reasoning and enable the development of temporal graph
foundation models.
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