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Abstract. The widespread dissemination of misinformation on social
media demands advanced detection strategies beyond traditional content-
based approaches. This study introduces a model-driven, explainable
framework for multimodal fake news detection, leveraging Graph Neural
Networks (GNNs) to jointly capture textual, relational, and social con-
text. The proposed method classifies news articles as real or fake while
simultaneously identifying key misinformation spreaders within the net-
work. Using GNN-Explainer, we enhance model transparency by identi-
fying the most influential nodes, edges, and features that drive classifi-
cation decisions. Experimental results on real-world datasets show that
combining structural and content-based signals improves detection accu-
racy. Further analysis reveals that misinformation spreaders consistently
rank high in centrality and act as amplifiers of false narratives; it also
highlights the need for dataset-specific interventions — disrupting coor-
dinated groups in dense, polarized networks and targeting key spreaders
in sparse, less polarized ones.

Keywords: Graph Neural Networks · GNN-Explainer · Misinformation
Spreading · Influential Nodes.

1 Introduction

Misinformation in online environments contributes to serious societal issues such
as vaccine hesitancy, election interference, and social polarization. Its rapid
spread is facilitated by the structure of social networks, where central actors,
such as influencers, amplify both real and false information [5]. Despite the
growing recognition of this issue, research gaps persist in understanding how to
strategically disrupt the flow of misinformation and mitigate its impact; more-
over, evaluation of targeted interventions against key nodes remains limited [1].

This study adopts a network-centric approach to analyze the structural and
behavioral dynamics of misinformation dissemination. We investigate three key
questions: (i) the role of central nodes in amplifying or mitigating fake news;
(ii) the social interactions most impactful in spreading misinformation; and (iii)



2 Martirano L. and Comito C.

the potential of targeting key nodes to curb its spread. These inquiries aim to
inform more effective and actionable mitigation strategies.

Our proposed framework leverages Graph Neural Networks (GNNs), specif-
ically Graph Attention Networks (GATs), to integrate multimodal information
— textual content, social interactions, and relational structures — into the fake
news detection process. Unlike traditional GNN-based approaches that typically
model homogeneous networks, our method explicitly accounts for heterogeneous
networks, comprising multiple types of nodes (e.g., news, tweets, users, hash-
tags), edges (e.g., retweets, replies, friendship) and meta-paths (e.g., co-occurring
hashtags, tweets discussing the same news - cf. Section 3). Modeling this hetero-
geneity allows for a more realistic and fine-grained representation of misinforma-
tion dynamics in complex online environments. The GAT architecture enables
the model to weigh the relative importance of neighboring nodes, allowing for
nuanced representation learning that captures both local and global patterns. To
address the interpretability challenge commonly associated with GNNs, we in-
corporate GNN-Explainer [12], which provides fine-grained insights into model
decisions by highlighting the most influential features and relationships that
drive classification outcomes. To further analyze misinformation spread, we in-
corporate network centrality measures to pinpoint the most influential users in
the network. By combining these components, our framework not only improves
classification accuracy but also enhances transparency and supports actionable
analysis of misinformation dynamics in complex, heterogeneous social systems.

The structure of the paper is as follows. Section 2 discusses major related
studies. Section 3 introduces the proposed fake news detection approach. Section
4 describes the methods used to understand the role of nodes and edges in fake
news propagation. Section 5 illustrates the experimental investigation. Finally,
Section 6 concludes the work and provides pointers for future research.

2 Related Work

Deep learning approaches address the limitations of traditional methods, based
solely on centrality metrics, by handling high-dimensional data and complex
network structures, but they are mainly suited for homogeneous graphs, failing in
processing multi-type information. Methods designed for heterogeneous networks
primarily focus on meta-path influence while overlooking variations in individual
node importance within meta-paths. Below we discuss some of the leading work
based on machine/deep learning techniques for complex networks.

Yu et al. [13] transformed node influence detection into a regression task
with Convolutional Neural Networks (CNNs). Kou et al. [7] proposed a multi-
head attentional regression model to refine influence aggregation based on Graph
Convolutional Networks (GCNs). Zhao et al. [15] combined structural and node
characteristics in a GCN-based classification model, while Keikha et al. [6] used
DeepWalk embeddings to filter influential nodes. Ahmad et al. [2] proposed a
data-driven approach for significant node identification, further advancing cen-
tralized feature selection methods. The approach most similar to ours is MEGA
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[11], which identifies influential author nodes in academic networks by leveraging
meta-paths, subgraph construction via random walks, and GAT-based influence
aggregation. In contrast, our method integrates centrality measures and GNN-
Explainer to refine node ranking based on learned representations, rather than
relying solely on predefined meta-paths. Additionally, it offers interpretability
by revealing which specific nodes are influential, supporting more informed in-
tervention strategies. Finally, MEGA is domain-specific and cannot be directly
adapted to broader real-world scenarios like misinformation detection.

3 The Multi-modal Fake News Detection Framework

Our approach leverages two key modalities, textual content and social network
structure, to classify fake news effectively. We exploit an early fusion approach
of modalities as proposed in [8], employing a GAT-based architecture enhanced
by meta-paths that operates on the heterogeneous graph at node-level, with
additional modalities encoded as initial node features. The model architecture
includes an embedding layer to encode the initial features of each node, followed
by attention layers to refine the embeddings based on the influence of neighboring
nodes. The final output layer classifies nodes by their likelihood of being fake
news, relying thus on both the network topology and the other modalities.

For textual data, we exploit both news and related tweets using BERT-like
architectures. Specifically, we utilize TwHIN-BERT [14] for tweet encoding, a
multilingual model trained on Twitter data, and a sentence-transformer trained
in a Siamese architecture for news embeddings [4]. The social network structure
is modeled as a heterogeneous graph and processed in a type-aware manner,
with distinct attention mechanisms applied to different edge types. We employ
a GATv2 architecture [3] to capture the relational dependencies between nodes
while dynamically adjusting the importance of neighboring connections. For-
mally, given the heterogeneous graph G = ⟨V, E , A,R, ϕ, φ, ⟩, where V and E are
the sets of nodes and edges, A and R are the sets of node and relation types,
with |A| + |R| > 2, ϕ : V → A and φ : E → R are the node- and edge-type
mapping functions, resp., the updated node representation h

(l+1)
i for each node

i ∈ V at each layer l is computed by aggregating over all relation types:

h
(l+1)
i = σ

∑
r∈R

∑
j∈Nr(i)

α
(l)
ij,rW

(l)
r h

(l)
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where σ is the ELU activation, Nr(i) denotes the neighborhood of node i under
relation r, i.e., all nodes connected to i via an edge of type r; W(l)

r is the learnable
weight matrix for layer l specific to relation type r; α(l)

ij,r is the relation-specific
attention coefficient between i and j at layer l, calculated as follows:
α
(l)
ij,r = softmaxj∈Nr(i)

(
LeakyReLU
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where a
(l)
r is the relation-specific learnable attention vector, and ⊙ denotes

element-wise multiplication. h(0)
i corresponds to the initial feature vector.
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Fig. 1: Logical schema to detect top-k user nodes in a given heterogeneous graph.

To capture more nuanced patterns and indirect relationships, we extended
the GAT architecture to include meta-paths as additional relations. A meta-path
type or simply meta-path in a heterogeneous network is a composite relation
modeling high-order proximity induced by a path a1

r1−→ a2
r2−→ ...

rx−→ ax+1

between two node types, a1 ∈ A and ax+1 ∈ A, which are expected to share
information – see Tables 1 and 2 for concrete meta-path examples. A meta-path
instance is a sequence of connected nodes matching the node and edge types in
the meta-path, able to make two distant nodes in the network reachable.

Please note that, as well as to tell fake and real news apart, the learned
embeddings can be used for multiple downstream tasks, at node, edge and
(sub)graph level, such as identifying critical nodes, predict the user interactions
or detect coordinated misinformation campaigns.

4 Unraveling key actors in Fake News Classification

Identifying key nodes and relationships, such as influencers and spreading pat-
terns, is crucial for understanding their role in either amplifying or suppressing
misinformation within social media. To develop effective intervention strategies,
we combine traditional graph theory measures with explainability of the GNN,
leveraging its output in the multimodal fake news detection task (see Fig. 1).

4.1 Centrality-Based Approach

Centrality measures are traditionally employed to identify key nodes within the
information diffusion process. We leverage the following metrics for user nodes:

– Degree Centrality. Reflects the number of direct connections a user has, cap-
turing their immediate influence;

– Betweenness Centrality. Measures how often a user acts as a bridge between
other nodes, highlighting their role in spreading information by facilitating
communication between otherwise disconnected groups;

– Closeness Centrality. Indicates how quickly a user can reach others in the
network, capturing their ability to spread information across the network;

– Pagerank. Quantifies a user’s overall importance within the graph, based on
the connectivity with other influential nodes;

– Voterank. Identifies influential nodes in a network based on an iterative vot-
ing process by selecting influential nodes based on their ability to influence
others while avoiding redundancy.
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Each metric captures different aspects of user influence and network dynam-
ics. However, these methods may overlook contextual factors in misinformation
spread and can be computationally intensive, especially in large or dense net-
works. To overcome these limitations, our framework incorporates model-driven
analysis using the trained GAT and advanced explainability techniques.

4.2 GNN Explainer Approach

GNN-Explainer [12] is a post-hoc method designed to uncover the most impor-
tant structural and feature-related factors influencing GNN’s predictions. We
thus identify which nodes have the highest contribution to classification predic-
tions, revealing whether structural centrality aligns with model-relevant nodes.
We compute a node-level score according to two complementary strategies:

– feature-based score (for short, Expl. Feats.), computed by summing along the
feature dimension, i.e., by aggregating the contributions of all its features;

– relation-based score (for short, Expl. Rel.), computed by summing along the
incident edges, i.e., by aggregating the contributions of all its neighbors.

For user nodes, node features include engagement metrics, credibility scores,
and content characteristics, while relations between users include mentions or
interactions on the same posts.

Combining centrality metrics with GNN-Explainer enables a comprehensive
assessment of both structural and contextual influence in misinformation dy-
namics. Both approaches applied on the heterogeneous GAT deal with the mul-
tiplicity of types in the graph, allowing any node type to be chosen as target.

5 Experimental Evaluation

The evaluation aims to demonstrate the effectiveness of our fake news clas-
sification framework and validate its ability to identify influential users while
providing interpretable insights into misinformation spread.

5.1 Datasets

Experiments have been conducted on two real-world datasets, i.e., MuMiN and
PolitiFact datasets. Both are modeled as heterogeneous information networks,
with multiple node and edge types and external information associated with
nodes available as a set of attributes. The former is multi-topic; a complete
description is provided in [9]. The latter is extracted from the FakeNewsNet data
repository [10], which fact-checks news pertaining to the US political system.

In the following, we use the terms Claim and News interchangeably, as the
MuMiN dataset refers to news items as Claims, while the PolitiFact dataset uses
the term News. Classification is performed on nodes of type Claim (C) in the
MuMiN dataset and nodes of type News (N) in the PolitiFact dataset.
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Table 1: MuMiN statistics, in terms of no. of nodes, edges and meta-paths. In
bold are highlighted the types involving users.

# Nodes

Claim (C) 2168
Tweet (T) 4340
Reply (R) 195459
User (U) 153168

Hashtag (H) 28091
Image (I) 1020

Article (A) 1453

# Meta-paths

C-T-U-T-C 28867
C-T-H-T-C 21577

C-T-R-T-C_r 2859
C-T-R-T-C_q 3042

U-T-U 11412
U-R-U 146056

# Edges

T discusses C (C-T) 5081
R reply_to T (T-R_r) 90196
R quote_of T (T-R_q) 101216
T has_hashtag H (T-H) 2289
T has_article A (T-A) 1898
T has_image I (T-I) 1028

T mentions U (U-T_m) 1119
U posted T (U-T_p) 4091
U posted R (U-R) 179247

U retweeted T (U-T_r) 13402
U follows U (U-U_f) 18379

U mentions U (U-U_m) 2797
U has_hashtag H (U-H) 50451

Table 2: PolitiFact statistics, in terms of no. of nodes, edges and meta-paths. In
bold are highlighted the types involving users.

# Nodes

News (N) 696
Tweet (T) 268306
User (U) 169106

Hashtag (H) 18631

# Meta-paths
N-T-H-T-N 44682
N-T-U-T-N 46025

N-T-U-U-T-N 20056
U-T-U 533

# Edges

T discusses N (N-T) 276676
T has_hashtag H (T-H) 59782

U posted T (U-T_p) 285124
U retweeted T (U-T_r) 539
U mentions U (U-U) 84093

To enhance classification performance by capturing richer structural and se-
mantic relationships, we build different meta-paths toward the Claim/News node
type. Two meta-path types are common to both datasets: including connections
between pairs of claims (news) discussed in tweets by the same user or associated
with the same hashtag. Additionally, dataset-specific meta-paths are defined. For
MuMiN, we identify pairs of claims belonging to the same conversation thread
through reply or quote relationships, respectively. For PolitiFact, we include pairs
of news discussed in tweets posted by users who mention each other. Tables 1
and 2 show the statistics in terms of number of nodes, number of edges, and
number of meta-path instances for each type, for the two datasets.

Centrality measures are computed with respected to the user graph, a homo-
geneous weighted graph constructed from the heterogeneous one by keeping all
nodes of type User. Edges include both direct relationships between users in the
heterogeneous graph (e.g., mentions and friendship) and meta-paths connecting
pairs of users based on their interactions on posts (e.g., retweet and reply).

Users are further categorized into fake, real and mixed based on the news
they discuss and spread with their tweets. Mixed users are those who are not
dominated by the spread of either real or fake news because the difference be-
tween the two on the total news discussed is less than 25%.
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Table 3: Results of the Fake News Detection task averaged over 5 runs.
Dataset F1-micro F1-macro Precision T Recall T Precision F Recall F

MuMiN 0.954±0.007 0.788±0.117 0.721±0.139 0.647±0.191 0.967±0.014 0.985±0.009
Politifact 0.859±0.039 0.845±0.054 0.848±0.066 0.943±0.044 0.909±0.063 0.736±0.153

cumulative mean undersampling
Aggregation strategy

0.0

0.2

0.4

0.6

0.8

Im
po

rt
an

ce
 s

co
re

Nodes importance
Edges importance

(a) PolitiFact dataset

cumulative mean undersampling
Aggregation strategy

0.0

0.2

0.4

0.6

0.8

1.0

Im
po

rt
an

ce
 s

co
re

Nodes importance
Edges importance

(b) MuMiN dataset

Fig. 2: Importance scores for nodes and edges w.r.t. diverse aggregation strategies

5.2 Results

Fake News Detection Performance We first assess the performance of the
proposed GAT-based architecture in classifying multi-modal fake news. Table 3
reports accuracy metrics for both datasets, highlighting the model’s ability to
generalize across different misinformation domains. More details are provided in
[8]. The strong performance justifies the explainability study.

Here, we report the main parameters used in the experimentation, selected
via a focused grid search based on validation performance. As regards the graph
neural network model, we employed a l-layer GAT [3] architecture with dropout
set to 0.4, hidden channels dimension set to 64 and out channel dimension set to
2 as the number of classes. The number of layers l was set to 2 for the PolitiFact
dataset and to 3 for MuMiN. We employed a weighted cross entropy loss in a fully
supervised setting, with weights inversely proportional to the class frequency. We
trained the model over 200 epochs and used the Adam optimization algorithm.
The learning rate was set to 0.005 while the weight decay to 0.001.

The results validate the effectiveness of our approach in leveraging both tex-
tual and structural information for fake news detection, and enable our subse-
quent analysis on influential node identification and explainability.

Explainability Study This section delves into an in-depth evaluation of the
classifier’s decision process, helping to assess the contribution of the two modal-
ities. We employed a Captum-based GNNExplainer [12] using the Integrated
Gradients algorithm for multi-instance explanations, able to quantify each input
feature and relation’s impact on the model output via gradient analysis.
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Fig. 3: Node types importance based on features (a-b) and on relations (c-d).

Features (nodes) vs relations (edges) importance. We evaluate component con-
tributions in the social graph by computing importance scores. For nodes, scores
are based on individual features, while for relations, scores are computed for
edge and meta-path instances. We define three aggregation strategies to assess
node/edge contributions: cumulative (sum of all feature or instance scores), mean
(type-normalized scores), and undersampling (top-k instances only). Figure 2(a)
shows that for PolitiFact, nodes dominate cumulative importance (overall be-
havior), while edges are more influential in mean importance (per-instance de-
cisions). For MuMiN (Fig. 2(b)), cumulative and undersampling yield opposite
trends, though mean importance again highlights edge dominance in misinfor-
mation propagation. The cumulative strategy particularly reflects the underlying
network structure, where denser graphs naturally yield higher aggregated scores
for edges. Top-k analysis reveals edges slightly outweigh nodes in PolitiFact,
while the opposite accounts for MuMiN, confirming both components’ impor-
tance for fake news detection and the value of multi-modal approaches.

Individual node and relation type importance. We analyze the impact of individ-
ual node and relation types using the undersampling strategy (evaluating only
the top-k instances per type) to assess their structural and semantic contribu-
tions. To ensure clarity in presenting the results, we adopt the following notation.
Node types are denoted by their initial letter (e.g., U for users), while edges and
meta-paths are represented by the initials of connected node types (e.g., N-T for
News-Tweet), plus any distinctive suffix if multiple relations between two node
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Fig. 4: Edge and meta-path types importance.

types exists. Reciprocal relationships, such as bidirectional interactions between
news and tweets, are aggregated to ensure comprehensive analysis (e.g., N-T
encompasses both "news is discussed by a tweet" and "tweet discusses a news").

A deeper analysis of individual node types (see Figure 3) reveals that hashtags
and tweets contributed the most to model predictions across all categories, more
than news node target type for the PolitiFact dataset. In both datasets, tweet
connections drive the classification (Figure 3(c)-(d)) and meta-paths emerge as
influential structural components for misinformation detection (Figure 4).

In the PolitiFact dataset, hashtags emerge as the most influential node type,
both in terms of features and relationships. This prominence can be attributed
to several factors. First, hashtags provide semantic coherence by grouping topic-
specific discussions, which are often exploited in misinformation campaigns. Sec-
ond, they foster network influence through dense communities that amplify mes-
sage propagation. Third, their propagation patterns can reveal coordinated activ-
ity, such as bot-driven amplification. Lastly, hashtags act as cross-modal signals,
bridging textual content and network structure.

Conversely, the MuMiN dataset exhibits distinct patterns: claims, hashtags,
and images are the most impactful nodes, while claim-tweet interactions and
retweet relations dominate edge importance. These differences arise from struc-
tural disparities between the datasets. Specifically, MuMiN is denser, with abun-
dant relationships that enhance the role of multi-hop connections and meta-
paths. In contrast, sparser graphs like PolitiFact rely more on node-level fea-
tures due to fewer relational patterns. Overall, the results underscore the inter-
play between graph density and model explainability. Dense networks prioritize
structural importance, whereas sparser ones emphasize feature-level contribu-
tions, highlighting the need for adaptable interpretation frameworks depending
on network topology.

Identifying Key Influential Users We then focus on user nodes, who play
a critical role in fake news propagation, by combining network centrality met-
rics with GNN-Explainer outcomes. These techniques generate independent node
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Fig. 5: Label distribution of top-k (k=100) most influential users. Stacked bar
chart for different ranking techniques.
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Fig. 6: User label distribution in communities with at least 10 members. Stacked
bar chart for largest community IDs.

rankings, capturing both structural influence (via centrality measures) and model-
learned significance (via GNN-Explainer). The results demonstrate consistent
alignment between these methods, with top-ranked users predominantly being
fake news spreaders based on each technique and across both datasets (Figure
5). This insight indicates that both structurally significant users within the net-
work and those identified as critical by GNN-Explainer are predominantly mis-
information actors, reinforcing the importance of focusing not only on network
connectivity but also on content-driven influence. Their impact extends beyond
simple connectivity; they shape narratives and engagement patterns that re-
inforce the persistence of fake news. Thus, effective mitigation strategies must
target not just high-degree hubs but also clusters of mid-level influencers who
operate within misinformation ecosystems, amplifying false information across
different sub-networks.

Further investigation through community detection reveals distinct propa-
gation patterns between datasets. The Louvain algorithm identifies power-law-
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distributed community sizes, with most communities being small but a few sig-
nificantly larger (e.g., 95 users in the largest PolitiFact community and 1,730
users in the largest MuMiN community). Figure 6 plots the distribution of users
spreading fake and real news within larger communities (at least 10 members)
in the two datasets. The community analysis reveals strong polarization pat-
terns across datasets. In MuMiN, these larger communities show strong polar-
ization, functioning as misinformation echo chambers where false narratives are
reinforced through coordinated clusters of mid-level influencers rather than cen-
tralized hubs. This decentralized structure mirrors real-world misinformation
campaigns that rely on distributed networks of actors. In contrast, PolitiFact
exhibits more isolated misinformation spreaders within predominantly real-news
communities, suggesting simpler propagation dynamics centered around individ-
ual superspreaders. These structural differences have important implications for
intervention strategies. For MuMiN-like networks with dense, polarized commu-
nities, effective mitigation requires disrupting coordinated clusters and mid-level
influencers. For PolitiFact-like structures with isolated spreaders, targeting key
individual actors may be adequate.

These findings collectively demonstrate the necessity of adopting an inte-
grated analytical framework that simultaneously considers both content charac-
teristics and network structure. Such a dual perspective not only provides a more
comprehensive understanding of misinformation propagation patterns but also
enables the development of more robust and generalizable intervention strate-
gies, capturing the nuanced mechanisms through which false narratives emerge,
persist, and spread within different network ecosystems.

6 Conclusion

This study introduced a graph-based, explainable framework for fake news detec-
tion, combining Graph Attention Networks with GNN-Explainer and centrality-
based influence analysis. Our multimodal approach effectively integrates tex-
tual and social signals to achieve high classification accuracy while offering in-
terpretability. Experiments on real-world datasets highlight how graph density
shapes misinformation dynamics: structural relationships dominate in denser
networks, whereas node-level features play a larger role in sparser ones. Exploring
centrality measures further reveals that misinformation spreaders consistently
occupy top-ranked positions, acting as both influential nodes and amplifiers of
false narratives. These insights underscore the importance of dataset-specific
interventions: disrupting coordinated groups in highly connected, polarized net-
works, and targeting key individuals in sparser environments.

Future work will explore adaptive mitigation strategies through reinforce-
ment learning and temporal modeling, aiming to enhance responsiveness to the
evolving nature of misinformation. By advancing the understanding of misin-
formation patterns, our research lays the groundwork for more targeted and
effective countermeasures in digital ecosystems.
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Test reproducibility. The code necessary to replicate our experiments is available at: https:
//github.com/lilymart/M3DUSA.
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